

Algebraic coarse-graining methods in fracture mechanics: tackling local lack of correlation using domain decomposition

O. Goury, P. Kerfriden, S. P. A. Bordas *iMAM, Cardiff University*

Outline

- Why model order reduction?
- A straigthforward solution?

Partitioned POD method

- Domain decomposition methods
- System approximation

Why model order reduction? A straigthforward solution?

Outline

Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

Why model order reduction? A straigthforward solution?

Outline

Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

Why model order reduction? A straigthforward solution?

Non-linear expensive simulations

- Problems depending on microscale phenomena requires very fine mesh: expensive simulations
- Surgical simulation: real-time brain surgery simulation

• Aeronautics: advanced early-stage design

Why model order reduction? A straigthforward solution?

Projection-based model order reduction

We want to solve a parametrised mechanical problem:

$$\underbrace{\mathbf{\underline{F}}_{int}(\underline{\mathbf{U}}(\lambda),\lambda)}_{Non-linear} + \underbrace{\mathbf{\underline{F}}_{ext}(\lambda)} = \underline{\mathbf{0}}$$
(1)

We are interested in the solution $\underline{\mathbf{U}}(\lambda)$ for many different values of λ .

Projection-based model order reduction assumption:

Solutions $\underline{\mathbf{U}}(\lambda)$ for different parameters λ are contained in a space of small dimension $span((\underline{\mathbf{C}}_i)_{i \in [\![1,n_c]\!]})$

Why model order reduction? A straigthforward solution?

Proper Orthogonal Decomposition (POD)

Look for \underline{U} as $\underline{U} = \underline{C} \underline{\alpha}$. Where does the basis \underline{C} comes from?

Why model order reduction? A straigthforward solution?

Proper Orthogonal Decomposition (POD)

Look for \underline{U} as $\underline{U} = \underline{C} \underline{\alpha}$. Where does the basis \underline{C} comes from?

 Solve the full problem a certain number of times varying the input parameter λ

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot): $(\underline{U}_1, \underline{U}_2, ..., \underline{U}_{n_S}) = \underline{\underline{S}}$

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot): $(\underline{U}_1, \underline{U}_2, ..., \underline{U}_{n_S}) = \underline{\underline{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis <u>C</u>

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot): $(\underline{U}_1, \underline{U}_2, ..., \underline{U}_{n_S}) = \underline{\underline{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis <u>C</u>
- Reduced system: $\min_{\underline{\alpha}} \|\underline{\mathbf{F}}_{int}(\underline{\mathbf{C}}\underline{\alpha}) + \underline{\mathbf{F}}_{ext}\|$

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot): $(\underline{U}_1, \underline{U}_2, ..., \underline{U}_{n_S}) = \underline{\underline{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis <u>C</u>
- Reduced system: $\min_{\alpha} \|\underline{\mathbf{F}}_{int}(\underline{\underline{\mathbf{C}}} \underline{\alpha}) + \underline{\mathbf{F}}_{ext}\|$
- In the Galerkin framework: $\underline{\underline{C}}^T \underline{\underline{F}}_{int} (\underline{\underline{C}} \underline{\alpha}) + \underline{\underline{C}}^T \underline{\underline{F}}_{ext} = 0$

Why model order reduction? A straigthforward solution?

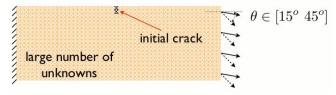
Outline

- Why model order reduction?
- A straigthforward solution?
- 2 Partitioned POD method
 - Domain decomposition methods
 - System approximation

Why model order reduction? A straigthforward solution?

Example

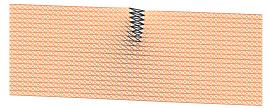
Parametrised fracture model



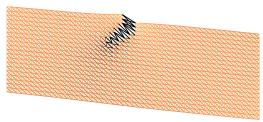
Why model order reduction? A straigthforward solution?

Snapshots

15 degrees:

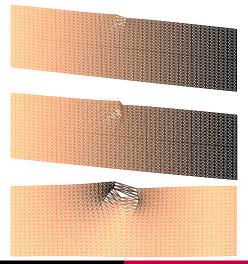


45 degrees:



Why model order reduction? A straigthforward solution?

First 3 modes of the POD basis

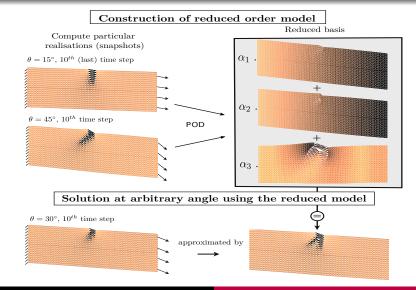


Gregynog, somewhere in Wales

Institute of Mechanics and Advanced Materials

Why model order reduction? A straigthforward solution?

Fracture not well captured



Why model order reduction? A straigthforward solution?

What can we do?

Idea: juste divide up the domain and select regions that are "reducible"

Domain decomposition methods System approximation

Outline

Introduction

- Why model order reduction?
- A straigthforward solution?

Partitioned POD method

- Domain decomposition methods
- System approximation

Domain decomposition methods System approximation

Outline

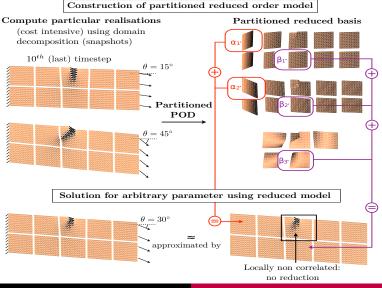
Introduction

- Why model order reduction?
- A straigthforward solution?

Partitioned POD method

- Domain decomposition methods
- System approximation

Domain decomposition methods System approximation



Domain decomposition methods System approximation

Is that good enough?

- Speed-up actually poor
- Equation " $\underline{\underline{C}}^T \underline{\underline{F}}_{int} (\underline{\underline{C}} \underline{\alpha}) + \underline{\underline{C}}^T \underline{\underline{F}}_{ext} = 0$ " quicker to solve but $\underline{\underline{C}}^T \underline{\underline{F}}_{int} (\underline{\underline{C}} \underline{\alpha})$ still expensive to evaluate
- Need to do something more \Longrightarrow system approximation

Domain decomposition methods System approximation

Outline

Introduction

- Why model order reduction?
- A straigthforward solution?

Partitioned POD method

- Domain decomposition methods
- System approximation

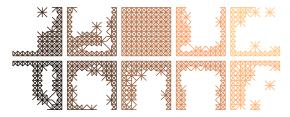
Domain decomposition methods System approximation

- Integrate only over some nodes of the domain
- Reconstruct the operators using a second POD basis

Domain decomposition methods System approximation

"Gappy" technique

Originally used to reconstruct images

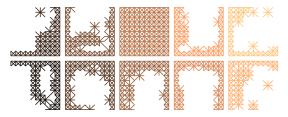


• $\underline{F}_{int}(\underline{\underline{C}} \underline{\alpha})$ approximated by $\underline{\underline{F}_{int}}(\underline{\underline{C}} \underline{\alpha}) = \underline{\underline{D}} \underline{\beta}$

Domain decomposition methods System approximation

"Gappy" technique

Originally used to reconstruct images

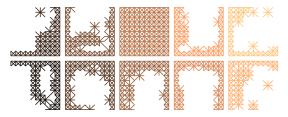


- $\underline{\mathbf{F}}_{int}(\underline{\underline{\mathbf{C}}}\underline{\alpha})$ approximated by $\underline{\underline{\mathbf{F}}_{int}}(\underline{\underline{\mathbf{C}}}\underline{\alpha}) = \underline{\underline{\mathbf{D}}}\underline{\beta}$
- $\underline{\mathbf{F}}_{int}$ ($\underline{\mathbf{C}} \underline{\alpha}$) is evaluated exactly only on a few selected nodes: $\underline{\mathbf{F}}_{int}$ ($\underline{\mathbf{C}} \underline{\alpha}$)

Domain decomposition methods System approximation

"Gappy" technique

Originally used to reconstruct images



- $\underline{\mathbf{F}}_{int}(\underline{\underline{\mathbf{C}}}\underline{\alpha})$ approximated by $\underline{\underline{\mathbf{F}}_{int}}(\underline{\underline{\mathbf{C}}}\underline{\alpha}) = \underline{\underline{\mathbf{D}}}\underline{\beta}$
- $\underline{\mathbf{F}}_{int}$ ($\underline{\mathbf{C}} \underline{\alpha}$) is evaluated exactly only on a few selected nodes: $\underline{\mathbf{F}}_{int}$ ($\underline{\mathbf{C}} \underline{\alpha}$)
- $\underline{\beta}$ found through: $\min_{\underline{\beta}} \left\| \underline{\widehat{\mathbf{D}}} \underline{\mathbf{F}}_{int}(\underline{\widehat{\mathbf{C}}} \underline{\alpha}) \right\|_2$

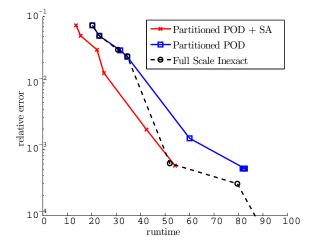
Outline

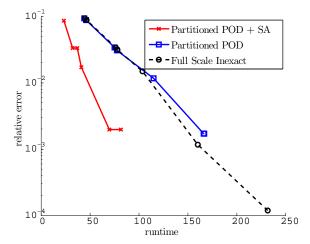
Introduction

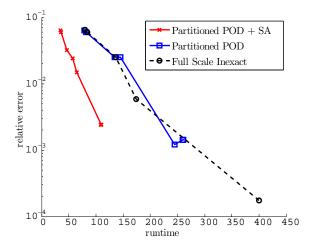
- Why model order reduction?
- A straigthforward solution?

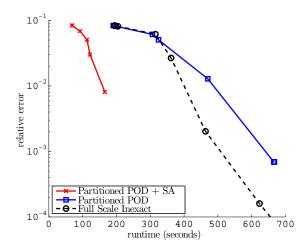
2 Partitioned POD method

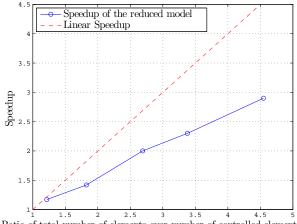
- Domain decomposition methods
- System approximation











Ratio of total number of elements over number of controlled elements

Thank you for your attention!