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Abstract

The problem of shear-locking in the thin-plate limit is a well known issue
that must be overcome when discretizing the Reissner-Mindlin plate equa-
tions. In this paper we present a shear-locking-free method utilising meshfree
maximum-entropy basis functions and rotated Raviart-Thomas-Nédélec ele-
ments within a mixed variational formulation. The formulation draws upon
well known techniques in the finite element literature. Due to the inherent
properties of the maximum-entropy basis functions our method allows for the
direct imposition of Dirichlet (essential) boundary conditions, in contrast to
methods based on moving least squares basis functions. Furthermore, our
method requires only first-order consistent basis functions and there is no re-
quirement to calculate second-order derivatives. We present benchmark prob-
lems that demonstrate the accuracy and performance of the proposed method.

Keywords: meshfree, meshless, maximum entropy principle,
shear-deformable plates, shear-locking

1. Introduction

A common problem encountered in numerical formulations of the Mindlin-
Reissner plate bending equations is the phenomenon of shear-locking. This
problem manifests itself as an overly stiff system as the plate thickness t̄ → 0
and can be attributed to the inability of the numerical approximation func-
tions to be able to represent the Kirchoff mode [1].

The shear-locking problem was first studied extensively in the context of
the Finite Element Method (FEM). One of the primary motivations for using
the Mindlin-Reissner plate theory over the Kirchoff theory from a numerical
standpoint is the ease of constructing finite element subspaces of H1(Ω0), or
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C0 interelement continuity, as opposed to the requirement of constructing a
subspace of H2(Ω0), or C1 interelement continuity for the Kirchoff theory [1].
The latter requires the use of more exotic finite elements, such as the Argyris
triangle [2], as opposed to the familiar and relatively easy to implement low-
order Lagrangian elements for the former. However it is well known that
using low-order Lagrangian elements for all of the displacement fields will
result in shear-locking in the thin plate limit [1].

Various remedies have been introduced in the finite element literature to
overcome this problem, including, but not limited to; selective reduced inte-
gration methods [3], the Assumed Natural Strain (ANS) or Mixed Interpo-
lation of Tensorial Components (MITC) method eg. [4, 5, 6], the Enhanced
Assumed Strain (EAS) method eg. [7, 8], and the Discrete Shear Gap method
eg. [9, 10]. The underlying mathematical reasoning for these methods can be
found in analysis via a mixed variational formulation such as the Hellinger-
Reissner or Hu-Washizu principle [11] where a combination of stresses, strains
and displacements are treated as independent variational quantities, see eg.
[8] for mixed treatment of EAS-type methods and [1] for mixed treatment of
ANS-type methods.

In the meshfree literature various distinct procedures have been introduced
to overcome the shear-locking problem:

Increase consistency of approximation This method can be seen as a form
of p-refinement. Increasing the consistency of the approximating func-
tions means that the Kirchoff mode can be better represented and thus
locking is partially alleviated. However, spurious oscillations can oc-
cur in the shear strains and the convergence rate is non-optimal [12].
Furthermore, high-order consistency meshless basis functions are more
computationally expensive, firstly due to the larger number of nodes
that must be in the nodal support to ensure invertibility of the moment
matrix, and secondly because of the increased bandwidth of the assem-
bled stiffness matrix [12]. Works using this approach in the hp-cloud
context include those by Garcia et. al. [13] for shear-deformable plates
and Mendonça et. al. [14] for shear-deformable beams. In the context of
the Element-Free Galerkin (EFG) method this method has been used by
Choi and Kim [15].

Matching fields This approach was originally introduced by Donning and
Liu [16] using cardinal spline approximation and later in the context
of the EFG method by Kanok-Nukulchai et. al. [12]. In this approach
the Kirchoff mode is matched exactly by approximating the plate rota-
tions using the derivatives of the basis functions used to approximate the
transverse displacement. More recently the matching fields approach
has been used by Bui et. al. [17]. However, as proven by Tiago and
Leitão [18] using either the m-consistency condition II of Liu et. al. [19],
or the Partition of Unity concept of Babuška and Melenk [20], the global
system of equations are singular because of a linear dependency in the
basis functions for the rotations.
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Nodal Integration These schemes essentially try to mimic the reduced inte-
gration method used in Finite Elements. Beissel and Belytschko [21]
showed that meshless reduced integration techniques can suffer from
spurious modes , similar to their FE counterparts. Some form of sta-
bilisation is required to neutralise these problems. Wang and Chen [22]
introduced Smoothed Conforming Normal Integration (SCNI), a form
of curvature smoothing, to alleviate locking.

Change of Variables In the analysis of Timoshenko beams, Cho and Atluri
[23] use a change of dependent variables, from transverse displacement
and rotation to transverse displacement and shear strain on the plate
mid-surface to alleviate shear-locking. This approach has been extended
to plates by Tiago and Leitão [18], but requires at least second-order
consistent shape functions.

Mixed Formulation In the mixed formulation fields such as stresses, strains
and pressures are treated as independent variational quantities in the
weak form. In the field of meshless methods this approach has pri-
marily been applied to the problem of locking in nearly incompressible
elasticity where Poisson’s ratio ν approaches 1/2. Vidal et. al. [24] used
diffuse derivatives to construct pseudo-divergence-free approximations
for the displacement that would satisfy the incompressibility constraint
a priori. González et. al. enriched the displacement approximation in a
Natural Element Method formulation [25]. The B-bar method from the
FE literature [26] was introduced into the EFG method by Recio et. al.
[27]. Recently Sukumar et. al. and Ortiz et. al. [28, 29] constructed
a method where the pressure variables are eliminated by calculating
volume-averaged pressures across domains attached to a node to for-
mulate a generalised displacement method.

In this work an approach based on the mixed formulation of the Reissner-
Mindlin plate equations is used for the first time within the context of a
meshfree method to solve the problem of shear-locking. We use first order
consistent maximum-entropy basis functions [30, 31] combined with lowest-
order rotated Raviart-Thomas-Nédélec [32, 33] finite elements to construct a
hybrid meshfree/finite element method that is free of shear-locking. Due to
the inherent properties of the maximum-entropy basis functions our method
possesses a so-called ‘weak’ Kronecker delta property and positive mass ma-
trix amongst other advantages. We show that the approach alleviates shear-
locking for a variety of numerical test problems. Finally we show the con-
vergence and locking-free property of the proposed method numerical exper-
iments for some test problems.

The outline of the paper is as follows; In section 2 we give an introduction
to maximum-entropy basis functions. In section 3 we give an overview of
the Reissner-Mindlin equations and derive the mixed discrete formulation.
In section 4 we present numerical examples for various benchmark problems
and show the suppression of shear-locking. Finally, we end with some brief
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remarks in section 5. In appendix Appendix A we discuss the construction of
Raviart-Thomas-Nédélec elements of lowest order and in appendix Appendix
B we discuss conforming transforms between reference and global elements.

2. Maximum-entropy basis functions

2.1. Background
Shannon’s [34] principle of Maximum-Entropy was postulated by Jaynes

[35] as a measure of uncertainty of a probability distribution. The Shannon
entropy H of a discrete probability distribution p = {p1, p2, . . . , pn} associated
with n events x = {x1, x2, . . . , xn} is defined by:

H(p) = E(− ln p) = −
n

∑
i=1

pi ln pi (1)

where E is the usual expectation function. Jaynes proposed that in the case
when insufficient information is available, the least-biased probability distri-
bution p is the one that maximises Shannon’s measure of entropy H(p) subject
to the known prior information about the distribution [35].

Shannon originally introduced his measure of uncertainty in the context
of communication theory [34], and it has been widely applied in fields as di-
verse as biology [36] and machine learning [37]. In the context of constructing
a meshfree approximation scheme, Sukumar [38] established that the basis
functions φi could be identified as discrete probabilities pi associated with the
nodes located at xi. In the words of Sukumar et. al. [39]: “the basis function
value φi is viewed as the probability of influence of a node i located at a point
xi.”

In the first paper by Sukumar [38] the principle of maximum entropy was
used to generate interpolants on polygonal convex domains.

Arroyo and Ortiz [30] introduced a modified entropy functional of the
form:

H(φ, x) = −
n

∑
i=1

φi(x) ln φi(x)− β(x)
n

∑
i=1

φi(x)‖xi − x‖2 (2)

where β(x) ∈ R is a parameter that can be varied to adjust the support width
of the meshless basis functions. When β → ∞ the Delaunay (linear finite ele-
ment) interpolant is obtained, and for β → 0 Shannon’s standard measure of
entropy is recovered. Adjustment of the parameter β(x) across the domain can
allow for seamless transition between regions discretised using finite elements
and regions discretised with meshfree basis functions.

Later, in the most general approach, Sukumar and Wright [31] proposed
the use of a relative entropy functional which allows the choice of any suffi-
ciently smooth prior weight function wi associated with each node i:

H(φ, w) = −
n

∑
i=1

φi(x) ln
(

φi(x)
wi(x)

)
(3)
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It can easily be shown that for the choice of a Gaussian Radial Basis Function
(RBF) for the prior weight function wi(x) = exp(−β(x)‖xi− x‖2) the modified
entropy functional eq. (2) of Arroyo and Ortiz may be recovered [31]. In this
paper we use the C2 quartic spline as our prior weight function:

wi(r̄) =

{
1− 6r̄2 + 8r̄3 − 3r̄4, 0 ≤ r̄ ≤ 1
0, r̄ > 1

(4)

where r̄ = ‖xi − x‖/ρi and ρi is the support radius of node i.

2.2. Properties
Maximum Entropy basis functions have various advantageous properties

over the more commonly used MLS type basis functions which have seen wide
application in the Element-Free Galerkin (EFG) method [40]. These properties
include [30]; variation diminishing property (roughly speaking, the approxi-
mation is not more oscillatory than the data that it approximates), C∞ conti-
nuity [41], positivity φi ≥ 0 ∀i which leads to a positive mass matrix, and a
‘weak’ Kronecker delta property.

We will expand on the weak Kronecker delta property here. It is well-
known that the MLS shape functions do not satisfy the Kronecker delta prop-
erty and therefore the trial and test function spaces cannot be built to sat-
isfy the Dirichlet (essential) boundary conditions a priori [42]. Two solu-
tions present themselves using MLS type approximation schemes, an excel-
lent overview is given by Huerta et. al. [42]; the first is to use a modified
weak form, such at the method of Lagrange multipliers, penalty method or
Nitsche’s method [43], which enforces the essential boundary conditions as
part of the weak form, or alternatively blend meshfree approximations with
Lagrangian finite elements near the boundary [44, 42].

For maximum entropy basis functions there is no need to resort to any spe-
cial methods to enforce Dirichlet boundary conditions. Arroyo and Ortiz [30]
prove that for a node set X with convex hull conv X that the shape functions
φi corresponding to nodes xi on the interior of the convex domain vanish on
the boundary. Furthermore, if a node xi is an extreme point of conv X then
the basis functions have the Kronecker-delta property φj(xi) = δji. These ideas
are illustrated in fig. 1.

The outcome of this is that imposing essential boundary conditions is as
simple as the in the FEM, greatly easing the implementation of meshfree meth-
ods based on maximum entropy basis functions.

Some other applications of maximum entropy approximants include ex-
tension to second-order consistency [45, 46], variational optimisation of the
support width parameter β [47], approximating smooth manifolds (thin shells)
on scattered data points [48] and co-rotational elasticity [49].

2.3. Construction
We follow the approach of Sukumar and Wright [31] to construct the basis

functions, and a brief overview is given here. The maximum-entropy basis
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Figure 1: A node set X and its (weakly) convex hull conv X shown by the dashed line. Nodes
{1, 3, 4, 5, 6} have the Kronecker-delta property (interpolatory), whilst node 2 has the ’weak’ Kro-
necker delta property. All internal nodes are non-interpolatory in a similar way to basis functions
constructed with MLS.

functions φi may be found from the solution of a convex optimisation problem
of the form [31]:

min
φ∈Rn

+

n

∑
i=1

φi(x) ln
(

φi(x)
wi(x)

)
(5a)

subject to the constraints [31]:

n

∑
i=1

φi(x) = 1 (5b)

n

∑
i=1

φi(x)xi = x (5c)

φi(x) ≥ 0 ∀i, x (5d)

Constraint eq. (5b) is the same as the condition of Partition of Unity and
constraint eq. (5d) is required to ensure that the shape functions can be inter-
preted as probabilities in the context of Shannon’s entropy functional. Con-
straint eq. (5c) ensures that the basis functions can exactly reproduce linear
polynomials.

This convex problem is solved numerically using standard techniques from
the convex optimisation literature by considering the dual formulation, see eg.
Boyd and Vandenberghe [50]. The solution is [31]:

φi(x) =
Zi(x; λ)

Z(x; λ)
(6a)

Zi(x, λ) = wi(x) exp (−λ · (x− xi)) (6b)
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Z(x; λ) = ∑
i

Zi(x, λ) (6c)

where λ = [λ1, λ2, . . . , λd]
T is a vector of Lagrange multipliers and d is the

dimensionality of the domain. The solution for the Lagrange multipliers λ∗

can be found from the following optimisation problem:

λ∗ = arg min ln Z(λ) (7)

Denoting φ∗ as the basis function solution corresponding to the Lagrange
multipliers λ∗ calculated at a particular point x we can then write the basis
functions as:

φ∗i (x) =
Zi(x; λ∗)

Z(x; λ∗)
(8)

and the basis function spatial derivatives as:

∇φ∗i (x) = φi

[
(x− xi) ·

(
H−1 − H−1 · A

)
+
∇wi
wi
−

n

∑
j=1

φj
∇wj

wj

] (9)

where:

A =
n

∑
j=1

φj (x− xi)⊗
∇wj

wj
(10)

and H is the Hessian matrix calculated with respect to the Lagrange multipli-
ers:

H =
n

∑
j=1

φj (x− xi)⊗ (x− xi) (11)

The above equations for the shape function derivatives ∇φ∗i (x) simplify sig-
nificantly when the Gaussian prior weight function is used [31]:

∇φ∗i (x) = φi H−1 · (x− xi) (12)

3. Governing equations and mixed formulation

The derivation of the Reissner-Mindlin plate equations starts with the full
3D equations of linear elasticity which are then simplified by making a set of
appropriate geometrical, kinematical and mechanical assumptions [51]. We
do not go into great detail, nor attempt to justify the validity of plate models,
see eg. [52] for a variational justification.
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3.1. Strong Form
Consider an open bounded domain Ω ⊂ R3 with boundary Γ. We define

a point x = {x1, x2, x3} ∈ Ω. We then assume that the domain is thin in the x3
direction and that the thickness t is given by a function t : Ω0 → R. Therefore
the whole domain Ω can be described by [51]:

Ω ≡
{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω0,

x3 ∈ [−t(x1, x2)/2, t(x1, x2)/2]
} (13)

where the domain Ω0 ⊂ R2 describes the plate mid-surface. The edges of the
plate are then given by [51]:

ΓE ≡
{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ Γ0,

x3 ∈ [−t(x1, x2)/2, t(x1, x2)/2]
} (14)

where Γ0 is the boundary of the domain Ω0. The displacement vector u : Ω→
R3 takes the specific form [51]:

u(x1, x2, x3) =
{

z1(x1, x2)− θ1(x1, x2)x3,

z2(x1, x2)− θ2(x1, x2)x3,

z3(x1, x2)
}T

(15)

where z(x1, x2) = {z1, z2, z3}T describes the displacement of a point on the
mid-surface of the plate in the directions (x1, x2, x3), and θ(x1, x2) = {θ1, θ2}T

describes rotations around the transverse normals. Note that the state of the
plate U = {z, θ}T ∈ (V3,R) is now only a function of the coordinates on
the plate mid-surface (x1, x2) ∈ Ω0. This allows us to make a trade between
integration over the thickness that would be required for the full 3D equations
of elasticity for the restricted set of kinematics in (15) [1]. We also assume that
the plate is in a state of plane stress [51]:

σ33 = 0 (16)

By making the further assumption of isotropic material properties we re-
late stresses σαβ to the strains ελµ by the reduced constitutive equations in
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Figure 2: The Reissner-Mindlin plate problem showing displacements (z1, z3) and rotation θ1.

tensor form [1]:

σαβ = Cαβλµελµ (17a)

σα3 =
1
2

Dαλελ3 (17b)

Cαβλµ =
E

2(1 + ν)

(
δαλδβµ + δαµδβλ+

2ν

1− ν
δαβδλµ

) (17c)

Dαλ =
2E

1 + ν
δαλ (17d)

where Greek indices (α, β, λ, µ) vary over the set {1, 2}, δαβ is the usual Kro-
necker delta function, E is the Young’s modulus and ν is the Poisson’s ratio of
the plate material.

After some primarily algebraic work, we can arrive at the strong form of
the Reissner-Mindlin equations [1]:

(t∇ · Lε(z))α = −pα ∀x ∈ Ω0 (18a)
λt∇ · (∇z3 − θ) = −p3 ∀x ∈ Ω0 (18b)(

t3

12
∇ · Lε(θ) + λt(∇z3 − θ)

)
= 0 ∀x ∈ Ω0 (18c)

where the operator L takes a second-rank tensor τ:

L [τ] := D [(1− ν)τ + ν tr(τ)I] (19)

and the operator ε is the usual measure of small-strain acting on a vector v:

ε(v) :=
1
2

(
∇v + (∇v)T

)
(20)

9



D and λ are material constants, relating to the bending and shear behaviour
of the material respectively:

D =
E

1− ν2 , λ =
Eκ

2(1 + ν)
(21)

κ is known as the shear correction factor and accounts for the difference in
strain energy created by the assumption of linear shear strains through the
thickness and the actual shear strains which must vanish on the top and bot-
tom surfaces of the plate [1].

3.2. Weak Form
The strong form of the Reissner-Mindlin problem (18) contains two decou-

pled sets of equations; the first described by eq. (18a) is known as the in-plane
problem as it involves only the in-plane displacements {z1, z2}T and the sec-
ond described by eqs. (18b) and (18c) are known is known as the out-of-plane
problem as it involves only the out-of-plane displacement z3 and rotations θ.
The solution of the in-plane problem is straightforward. It is the out-of-plane
problem that we will concentrate on here as it is this problem in which the
difficulty of shear-locking occurs.

Following a standard Bubnov-Galerkin type procedure, we multiply the
strong form of the out-of-plane problem eqs. (18b) and (18c) by a set of test
functions y3 and η respectively, integrate over the domain Ω0 and then inte-
grate by parts to derive the equivalent weak form.

We consider trial functions z3 ∈ V3 and θ ∈ R and test functions y3 ∈
H1

0(Ω0) and η ∈ [H1
0(Ω0)]

2 where H1(Ω0) is the usual Sobelov space of
square-integrable functions with square-integrable first derivatives in the do-
main Ω0. Furthermore, H1

0(Ω0) ⊂ H1(Ω0) is the subset of functions in
H1(Ω0) with vanishing values (in the sense of traces) on Γ0. The exact specifi-
cation of V3 and R depends on the Dirichlet (displacement) boundary condi-
tions. For example, for hard clamped conditions the spaces are V3 := H1

0(Ω0)

and R := [H1
0(Ω0)]

2 [53].
We normalise the constant thickness t with respect to the characteristic

in-plane dimension of the plate L:

t̄ =
t
L

(22)

With this normalisation in place we scale the load by a factor of t̄3 such that
p3 = gt̄3 to ensure that the solution U is bounded as t̄→ 0 [1].

The weak form of the out-of-plane problem is: Find (z3, θ) ∈ V3 ×R such
that [1]: ∫

Ω0

Lε(θ) : ε(η) dΩ + λt̄−2
∫

Ω0

(∇z3 − θ) · (∇y3 − η) dΩ

=
∫

Ω0

gy3 dΩ ∀(y3, η) ∈ V3 ×R
(23)
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We then define the scaled transverse shear strain γ = (γxz, γyz) as [51]:

γ = λt̄−2(∇z3 − θ) ∈ S (24)

allowing us to re-write eq. (23) in equivalent mixed weak form, treating the
shear strains γ as an independent variational quantity. We introduce strain
trial functions γ ∈ S and strain test functions ψ ∈ S to arrive at the following
constrained problem [51]: Find (z3, θ, γ) ∈ V3 ×R×S such that:∫

Ω0

Lε(θ) : ε(η) dΩ +
∫

Ω0

γ · (∇y3 − η) dΩ

=
∫

Ω0

gy3 dΩ
(25a)

∫
Ω0

(∇z3 − θ) ·ψ dΩ− t̄2

λ

∫
Ω0

γ ·ψ dΩ = 0

∀(y3, η, ψ) ∈ V3 ×R×S
(25b)

The space S can be characterised as follows [51]. Given z3 ∈ H1
0(Ω0) it

must hold that rot grad z3 = 0 ∈ L2(Ω0). The rot operator1acts on a two
component vector field q = (q1, q2) as [51]:

rot(q) =
∂q2

∂x1
− ∂q1

∂x2
(26)

For θ ∈ [H1
0(Ω0)]

2 it holds that rot θ ∈ L2(Ω0) and therefore:

∇z3 − θ ∈ H(rot; Ω0) (27)

Thus the shear space S for fixed t̄ can be identified with the space H(rot, Ω0).
The space H(rot; Ω0) is the Sobelov space of square integrable functions with
square-integrable rot and is defined as [51]:

H(rot, Ω0) :=
{

q ∈ [L2(Ω0)]
2 | rot q ∈ L2(Ω0)

}
(28)

In the limiting case t̄ → 0 the above equations only hold with the dual space
of S defined by S ′ = (H(rot, Ω0))

′ = H−1(div, Ω0). We refer the reader to
Bathe et. al. [55] for an in-depth discussion of these issues.

In summary, by introducing the shear strains as an independent varia-
tional quantity in the weak form we have re-cast our original problem which
deteriorates for thin-plates into a constrained saddle-point formulation with a
penalty term which is robust with the small parameter t̄.

1The rot operator is identical to the curl operator in R2, the latter notation used more fre-
quently in the electro-magnetics literature, see eg. [54]. However, the curl operator extends its
definition to R3 so we will use rot here to denote this restriction for our application.
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Figure 3: Reference triangle K̂ with vertices vi numbered starting anti-clockwise from v0 = (0, 0).
Edges ei are numbered corresponding to the opposite vertex. Edge tangent vectors τi are shown.

3.3. Discrete Weak Form
3.3.1. Mixed discrete weak form

We begin by discretising the shear strains γ. To build a conforming sub-
space of H(rot; Ω0) we use rotated Raviart-Thomas-Nédélec [32, 33] elements
of lowest order on a triangular background mesh. These elements are often
referred to as edge elements as their degrees of freedom are defined as inte-
grals along the element edges. We refer to this family of elements as NEDq
for q = 1, 2, . . . , where q refers to the order of polynomial included in the ba-
sis2. These elements can be viewed as rotated versions of those introduced by
Raviart and Thomas [32] to build conforming subspaces of H(div; Ω) as the
rot and div operator can be related by a rotation of a two component vector
field q by π/2.

We denote the discrete solution for the shear strains as γh(x) ∈ Sh where
Sh := NED1(Ω0; Th) ⊂ H(rot; Ω0). Th is a triangulation on Ω0 with edges
Eh. For a reference triangle K̂ with edges e ∈ Eh(K̂) (see fig. 3) and degrees of
freedom Σi defined on the edges ei the interpolation across K̂ can be written

2In Raviart and Thomas’s original paper [32] on constructing conforming subspaces of
H(div; Ω) they numbered their elements starting with q = 0, so the lowest-order element is
called RT0. In this paper we use the convention of Nédélec [33] and start with q = 1 as the final
polynomial space for the element includes terms of order Pq(K̂)
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Figure 4: Basis functions Ni associated with edge ei on the reference triangle K̂.

as:

γh(x̂1, x̂2) =
3

∑
i=1

Niγi

=

[(
−x̂2
x̂1

)(
x̂2

1− x̂1

)(
1− x̂2

x̂1

)]γ1
γ2
γ3


= Nγγ ∀(x̂1, x̂2) ∈ K̂

(29)

where (x̂1, x̂2) is the coordinate system in the reference triangle K̂. An overview
of the construction of these shape functions is given in Appendix A and the
transformation to a general element K is given in Appendix B. Similarly, we
denote the discrete solution for the tranverse displacement and rotations as
z3h ∈ V3h and θh ∈ Rh where V3h = Rh := ME(Ω0; N , ρ) ⊂ H1

0(Ω0). Nh
is a set of nodes in Ω0 associated with a set of support sizes ρ. Here we as-
sume that Ω0 is a convex domain so that all basis functions φi associated with
nodes inside the domain vanish on the boundary. We can then write the trial
functions for the displacement and rotations as:

z3h(x) =
N

∑
i=1

φiz3i =
[
φ1 φ2 . . . φN

]


z31
z32

...
z3N


= φz3 z3 ∀x ∈ Ω0

(30a)
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θh(x) =
N

∑
i=1

φiθi

=

[
φ1 φ2 . . . φN 0 0 . . . 0
0 0 . . . 0 φ1 φ2 . . . φN

]


θx1
θx2

...
θxN
θy1
θy2

...
θyN


= Φθθ ∀x ∈ Ω0

(30b)

We define our trial functions using the same basis as the test functions:

y3h = φz3, ηh = Φθ, ψh = Nγ (31)

We can then write the discrete linear set of equations as:∫
Ω0

BT
b DbBb dΩ θ+

∫
Ω0

BT
s Nγ dΩ γ =

∫
Ω0

φz3g dΩ (32a)

∫
Ω0

NT
γ Bs dΩ

{
θ
z3

}
− t̄2D−1

s

∫
Ω0

NT
γ Nγ dΩ γ = 0 (32b)

where the Bb ∈ R3×3N and Bs ∈ R2×3N are matrices containing component-
wise derivatives of the shape function vectors:

Bb =


∂φθ
∂x1

0

0 ∂φθ
∂x2

∂φθ
∂x2

∂φθ
∂x1

 (33)

Bs =

[
−φθx 0 ∂φz3

∂x1

0 −φθy
∂φz3
∂x2

]
(34)

and Ds ∈ R2×2 and Db ∈ R3×3 are matrices containing the material properties
of the plate:

Ds =

[
λ 0
0 λ

]
(35)

Db = D

1 ν 0
ν 1 0
0 0 1−ν

2

 (36)
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The above set of equations is a linear system of the following form:
Kb 0
0 0

C

CT −V




θ

z3

γ

 =


0

f

0

 (37a)

where
Kb =

∫
Ω0

BbDbBb dΩ (37b)

C =
∫

Ω0

BT
s Nγ dΩ (37c)

V =
∫

Ω0

NT
γ Nγ dΩ (37d)

f =
∫

Ω0

φz3g dΩ (37e)

where Kb ∈ R2N×2N , C ∈ R3N×|Eh |, V ∈ R|Eh |×|Eh | and f ∈ RN×1 where |Eh|
is the number of edges in the triangulation Th and N is the number of nodes
in the node set Nh. The total solution vector sizes is of size 3N + |Eh|.

4. Results

4.1. Implementation details
The method outlined in section 3 was implemented using a combina-

tion of Python, C++ and Fortran 90 programming languages. We used a
slightly modified version of N. Sukumar’s Fortran 90 code [56] to generate
the maximum-entropy basis functions. This code was interfaced to our object-
oriented C++ library which provides a consistent programming interface for
generating a variety of meshless basis functions including MLS and the Radial
Point Interpolation Method (RPIM) [57]. We wrapped the C++ library using
the Boost Python library [58] to allow direct access from Python. The integra-
tion and assembly steps of the numerical method were then implemented in
Python using the NumPy [59] library. We used the C++ mesh implementation
from the DOLFIN [60] and the FIAT library [61] to tabulate the basis NED1.
We used the ckdtree library from SciPy [62] for accelerated nearest-neighbour
searching.

4.2. Methods used for comparison
FE 1 Displacement We use standard linear C0 continuous Lagrangian ele-

ments, denoted CG1, for all fields (θ, z3) in a displacements-only weak
form. This formulation is prone to shear-locking.
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Figure 5: FE 2 Mixed Element Structure; transverse deflections are approximated using contin-
uous second-order Lagrangian element CG2 whilst the rotations are approximated using CG2
enriched with third-order bubble functions B3. The shear strains are approximated using NED2
elements which have two internal ‘moment’ degrees of freedom in addition to two degrees of
freedom on each edge.

FE 2 Displacement We use standard quadratic C0 continuous Lagrangian el-
ements, denoted CG2, for all fields (θ, z3) in a displacements-only weak
form. This formulation is prone to shear-locking.

FE 2 Mixed We use the element structure shown in fig. 5 in a mixed weak
form.

Maximum-Entropy (MaxEnt) Mixed This is the method outlined in section 3.

4.3. Parameters
We define the following parameters as quantities of interest in the con-

struction of both Nh and Th.
On node setNh we define ha as the distance between node a and its nearest

neighbouring node. On a regular grid the distance ha = h ∀a will be the same
for all nodes. We then define the support ρa of node a by the formula:

ρa = κγha (38)

On uniform grids of nodes we will take values γ =
√

2, 2,
√

4 + 1, 3 and
κ = 1.05 in an attempt to find a roughly optimal value.

We define the constraint ratio r as the ratio of the number of degrees of
freedom in the displacement variable function spaces (Vh,Rh) to the number
of degrees of freedom in the shear strain function space Sh:

r =
dimVh + dimRh

dimSh
(39)

This quantity is of interest because it gives a rough measure of the relative
sizes of the spaces which is inherently related to the stability and performance
of the final linear system of equations. We will show through numerical exper-
iments that if the ratio r is too low the method becomes over-constrained and
solution quality decreases, and if the ratio r is too high the method becomes
under-constrained and unstable.
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Figure 6: (a) Domain Ω0 for the SSSS square plate showing boundary conditions on each edge.
(b) Example discretisation of square domain.

4.4. Simply Supported Square Plate with Uniform Pressure
We use the common setup of a simply supported square plate with uni-

form pressure as a test problem as it has a closed-form analytical solution [63].
The problem domain Ω0 is defined by:

Ω0 =
{
(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < 1

}
(40)

and the boundary conditions are hard simply supported:

θ · τ = n · Lε(θ)n = z3 = 0 ∀x ∈ Γ0 (41)

where n is the unit normal vector to the boundary and τ is the unit tangent
vector to the boundary. The SSSS domain and boundary conditions are shown
in ??.

We take the following numerical values: E = 10920, ν = 0.3, κ = 5/6, g =
1 and define the following normalised transverse displacement ẑ3 [63]:

ẑ3 =
E

12(1− ν2)
z3 × 102 = z3 × 105 (42)

Note that there is no factor of t̄3 as in Reddy [63] as we have already scaled the
loading f by a factor of gt̄3 in the governing weak form to ensure the solution
is bounded as t̄→ 0.

We define the L2 relative error in eL2(uh, u) between the numerical solution

17
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Figure 7: Graph showing the effect of the parameter γ on convergence. N = 8, M = 12.

uh and exact solution u as:

eL2(uh, u) =
‖u− uh‖L2(Ω)

‖u‖L2(Ω)
=

(∫
Ω0

(u− uh)
2 dΩ

)1/2

(∫
Ω0

u2 dΩ
)1/2 (43)

In the case of the simply supported plate where we have an analytical solution
available we will use the above as an indicator of solution quality.

4.4.1. Parameters
In fig. 7 we show the effect of the parameter γ on the error in the L2 norm

for thick t̄ = 0.2 and thin t̄ = 0.001 plates. We can see that a value of γ =
√

2
is insufficient and that values of γ ≥ 2 appear to be optimal. For γ ≥

√
4 + 1

there seems to a slight increase in error for the thick plate, whilst error is
minimised at γ =

√
4 + 1 for the thin plate. However these variations are

small enough that we take a value of γ = 2 to minimise the bandwidth of the
linear system as well as shape function computation time.

We discretise the domain as shown in ??, using a uniform triangulation Th
with N cells along an edge, and a uniform node set Nh with M nodes along
an edge.

In fig. 8 we demonstrate the effect of the constraint ratio r on the error in
the L2 norm for varying t̄. We use a fixed maximum-entropy node set Nh with
M = 12 and vary the underlying uniform triangulation Th by adjusting N to
achieve combinations of (Nh, Th) with varying constraint ratios r.

We note that for thick plates t ≥ 10−1 the combinations of (Nh, Th) with
the lowest r value achieve the lowest error, whilst those with the highest r
values have the highest error. However, it is clear that the differences in error
for thick plates for varying r are small compared to those when the plate is
thin t̄ ≤ 10−2 thus we make decisions on the optimal values of r based on
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Figure 8: Showing the effect of the constraint ratio r on the solution for varying t̄. γ = 2.

results for thin plates alone. We can see that for N = 9, 10 corresponding to
r = 1.35, 1.65 the error increases rapidly as t̄ decreases. However, for N = 8,
corresponding to r = 2.07, the error stays bounded at around 10−3. For N = 7,
corresponding to r = 2.683 we have uniformly worse convergence across the
entire range of t̄. Furthermore to the results shown in fig. 8, we found that the
method became unstable for N ≤ 6 corresponding to values of r ≥ 3.6 and
for N ≥ 10 we found increasingly poor convergence performance. For the
discretisations used in our convergence studies we have found that constraint
ratios between 2.0 and 2.5 to be satisfactory.

Because of the non-polynomial nature of the maximum-entropy shape
functions accurate integration of the weak form typically requires Gauss quadra-
ture rules of higher order than those used in the FEM. To ensure that we are
integrating the weak form with sufficient accuracy we examined the effect
of Gauss quadrature order on the error in the L2 norm. In fig. 9 we show
that Gauss quadrature of order 3 or greater is sufficient to integrate the weak
form. In our results we used Gauss quadrature of order 5 to ensure no adverse
effects due to integration errors.

4.4.2. Locking
In fig. 10 we demonstrate the shear-locking-free property of the proposed

method through the convergence of the centre point transverse deflection
ẑ3h(0.5, 0.5) to the Kirchoff thin plate solution. We show both the Kirchoff
and Reissner-Mindlin analytical solutions; for thin plates 10−4 ≤ t̄ ≤ 10−2

the two almost coincide, whilst for thicker plates t ≥ 10−2 they diverge as
the Reissner-Mindlin theory’s relaxation upon the rotation of the transverse
normals ∇z3 6= θ becomes increasingly important. The FE 2 Displacement
result clearly shows the pitfalls of using an unmodified displacements-based
formulation with severe shear-locking for values of t̄ ≤ 10−2. We note that
shear-locking would also occur using the maximum-entropy basis functions,
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Figure 9: Graph showing the effect of the order of the Gauss quadrature rule used for integration
on convergence. N = 8, M = 12, γ = 2.0.

or indeed any other type of standard basis functions using an unmodified
displacements-based weak form. Clearly the proposed maximum-entropy
mixed method matches, as desired, the analytical solution throughout the
full range of thick and thin plates.

In fig. 11 we show the convergence of ẑ3h to the analytical solution ẑ3 in the
L2-norm for varying t̄. The error for the proposed maximum-entropy mixed
method stays bounded below 10−2 as t̄ → 0 whilst for the FE 1 displacement
method error increases rapidly for t < 10−1 as the formulation locks. Using
the FE 2 mixed formulation also results in a locking-free results.

In fig. 12 we show the convergence of z3h to the analytical solution ẑ3 in the
L2-norm against number of degrees of freedom for various shear-locking and
shear-locking-free methods for a thick plate t̄ = 0.2. We note that all of the
methods converge in the L2-norm. The FE 2 mixed, maximum-entropy mixed
and maximum-entropy displacement formulations provide significantly lower
errors than the FE 1 mixed and FE 1 displacement methods. The FE 2 mixed
formulation has the highest rates of convergence at O(dof−3/2) ∼ O(h3),
consistent with quadratic interpolation. The FE 1 displacement, maximum-
entropy mixed and maximum-entropy displacement formulations have con-
vergence rates ofO(dof−1) ∼ O(h2), consistent with linear interpolation/approximation.
We note that comparing the purely meshfree approach vs. our hybrid FE/meshfree
mixed approach that both convergence rates and errors are marginally worse
for the latter. However, our approach still seems to be competitive with the
FE 2 mixed method and significantly better than FE 1 displacement method.

In fig. 13 we show the convergence of z3h to the analytical solution ẑ3 in the
L2-norm against number of degrees of freedom for the proposed maximum-
entropy mixed and FE 2 mixed shear-locking-free methods for a thin plate
t̄ = 0.001. The maximum-entropy mixed approach has a convergence rate of
O(dof−1) ∼ O(h2) whilst the FE 2 mixed approach has a convergence rate
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Figure 10: Graph showing normalised central deflection z3(0.5, 0.5) of SSSS square plate for vary-
ing t̄.
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Figure 11: Graph showing error in ẑ3h for varying t̄. Maximum-entropy mixed: N = 8, M =
12, γ = 2.0. FE 1 displacement: N = 30. FE 2 mixed N = 8.
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Figure 12: Graph showing L2 error in ẑ3h against number of degrees of freedom using various
shear-locking and shear-locking-free methods for a thick plate t̄ = 0.2.

of O(dof−3/2) ∼ O(h3). For thin plates the proposed method appears to be
superior to the FE 2 mixed formulation.

4.5. Fully Clamped Square Plate with Uniform Pressure
Using the same domain Ω̄0 as defined in eq. (40) we now apply fully

clamped boundary conditions:

θ = z3 = 0 ∀x ∈ Γ0 (44)

Due to the lack of analytical solution we compute a reference solution on a
highly refined mesh Th with N = 70 using the FE 2 mixed formulation. We
take the Kirchoff centre point deflection as ẑ3 = 0.126401 according to İmrak
et. al. [64]. Our reference FE Reissner-Mindlin solution agrees with this value
to 4 decimal places.

In fig. 14 we show the central deflection of the plate for the proposed
method and the FE 2 mixed method alongside the reference solutions. We
can see that the proposed method provides competitive results with the FE 2
mixed method.

In fig. 15 we show contour plots of both ẑ3h and θ1h with t̄ = 0.01. These
contour plots were created by using the maximum-entropy basis functions to
approximate the results on a regular grid of points between nodes. Smooth
results are easily obtained with no post-processing required.

5. Concluding remarks

In this paper we have proposed a method for the locking-free simulation
of Reissner-Mindlin plates using a novel combination of maximum entropy
basis functions and rotated Raviart-Thomas-Nédélec elements.
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,ẑ

)

MaxEnt Mixed

FE 2 Mixed

O(dof−2/2) ∼ O(h2)

O(dof−3/2) ∼ O(h3)

Figure 13: Graph showing L2 error in ẑ3h using two locking-free methods for a thin plate t̄ = 0.001.
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Figure 15: CCCC square plate problem with t̄ = 0.01. (a) Transverse deflection ẑ3h. (b) Rotation
θ1h

The use of maximum entropy basis functions has allowed simple and di-
rect imposition of Dirichlet boundary conditions. This ‘weak’ Kronecker-delta
property is an inherent property of the maximum entropy approach, and
we believe this affords significant advantages over the more commonly used
moving-least-squares basis functions.

We comment that our approach has only required first-order consistency
in the meshfree basis functions, whereas approaches from other authors have
typically required second-order or higher consistency. This reduces the sup-
port size of the basis functions and creates a stiffness matrix with lower band-
width.

Through some simple test problems we have shown the efficacy of the
proposed method which seems to be competitive with the quadratic FEM.

The approach of using a mixed variational form, although well established
in the FEM, has not to our knowledge been used to solve the problem of
shear-locking in the mesh-free plate literature.

Although we have had to use an underlying mesh for the generation of
a H(rot; Ω0) conforming field, we believe that this is a technological gap be-
tween meshfree and FE that is already partially closed, thus opening up the
possibility of making our method ‘truly’ meshfree. We support this asser-
tion by referring to a paper by Buffa et. al. [65] where H(curl, Ω) conform-
ing B-spline shape functions are constructed for the solution of isogeometric
electro-magnetics problems.

Again, mimicking the approach used in many successful FE approaches
such as the MITC family of elements, the elimination of the shear-strain field
γ via some kind of projection or reduction operator (typically denoted Πh
or Rh respectively in the literature) may also be possible. We support this
by referring to papers by Sukumar et. al. and Ortiz et. al. [28, 29] where,
although not explicitly referred to as such, a form of projection operator is
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defined by volume-averaging the pressure field over elements attached to each
node, eliminating the pressure field from the final stiffness matrix.

Appendix A. Rotated Raviart-Thomas-Nédélec Elements

This section gives a brief overview of the construction of the lowest-order
rotated Raviart-Thomas-Nédélec elements, here denoted NED1. Whilst these
elements are well known in the mathematics literature they seem to be less
well known in the engineering community.

We begin with the classical Ciarlet triple definition of a finite element
(T,V ,L) where T is an element geometry (triangle, tetrahedron, quadrilat-
eral etc.), V is a function space (typically a polynomial) defined on T, and
L = {l1, l2, . . . , ln} is a set of degree of freedom which are a set of linear
functions on V [66]. The degrees of freedom li must be linearly independent.

First of all we will define some polynomial spaces that will be used to
define the space V for our element NED1. We denote Pk(Σ) as the set of
polynomials of degree k on Σ, where Σ is entity of the reference element T
such as the edges, faces, or the element itself. So as an example, the set P2(K̂)
of polynomials on the reference triangle is:

P2(K̂) =
{

1, x̂1, x̂2, x̂2
1, x̂1 x̂2, x̂2

2

}
(A.1)

Similarly, we denote P̃k(Σ) as the set of homogeneous polynomials of degree k
on Σ. So for example, the set P̃2(K̂) of homogeneous polynomials of second-
order on the reference triangle is:

P̃2(K̂) =
{

x̂2
1, x̂1 x̂2, x̂2

2

}
(A.2)

We now define a new polynomial space Sk(K̂) as:

Sk(K̂) :=
{

p ∈ [P̃(K̂)]2 : p · x̂ = 0
}

(A.3)

We now have all the necessary components ready to define our finite ele-
ment NED1(K̂) which will construct a conforming subspace of H(rot, Ω0).

Geometry The geometry is the standard reference triangle K̂ ⊂ R2.

Function Space Nédélec characterised the function space VNEDk in Rd for d =
2, 3 as the polynomial space:

VNEDk :=
(
Pk−1(K̂)

)d ⊕ Sk (A.4)

where the symbol ⊕ means the direct sum of the two vector spaces.

In R2 this space can be written in an equivalent form:

VNEDk =
(
Pk−1(K̂)

)2 ⊕ P̃k−1

(
−x̂2
x̂1

)
(A.5)
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As we will only be deriving the lowest-order element k = 1 we can write
the space VNED1 as:

VNED1 =
(
P0(K̂)

)2 ⊕ P̃0

(
−x̂2
x̂1

)
(A.6)

=

〈(
1
0

)
,
(

0
1

)
,
(
−x̂2
x̂1

)〉
(A.7)

We can therefore write the shape functions Ni ∈ VNED1(R) as:

Ni = ai + bi

(
−x̂2
x̂1

)
(A.8)

Degrees of Freedom The set of degrees of freedom L defined on VNED1 in the
2 dimensional case consist of two types of linear functionals:

1. edge degrees of freedom on ê

l(v) =
∫

ê
(v · τ̂)p dŝ ∀p ∈ Pk−1(ê) ∀ê ∈ K̂ (A.9)

giving a total of 3k edge degrees of freedom.
2. inner degrees of freedom on K̂

l(v) =
∫

K̂
v · p dx̂ ∀p ∈ (Pk−2(K̂))2 k ≥ 2 only (A.10)

giving a total of k(k− 1) inner degrees of freedom

Fortunately in our case k = 1 we only have 3 edge degrees of freedom
specified by eq. (A.9) and the calculations are relatively simple.

We label the edges as in fig. 3 and orient the unit tangent vectors as shown
giving:

τ̂1 =
1√
2

(
−1
1

)
, τ̂2 =

(
0
1

)
, τ̂3 =

(
1
0

)
(A.11)

We can then write the set of edge degrees of freedom li using eq. (A.9) as:

li(v) =
∫

êi

(v · τ̂i)× 1 dŝ i = 1, 2, 3 (A.12)

The final step is to construct a finite-element basis N1, N2, N3. To do this we
require:

li(Nj) = δij (A.13)

We will perform this calculation for the degree of freedom l1 defined across
the edge e1 as this is the trickiest calculation.

l1(Nj) =
∫

ê1

(
aj + bj

(
−x̂2
x̂1

))
· 1√

2

(
−1
1

)
dŝ (A.14)
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Figure B.16: Transform between reference element K̂ and physical element K

We then parametrize the edge ê1 as:

r(t) = 〈1− t, t〉 , x̂1 = 1− t, x̂2 = t (A.15)

dŝ2 = (−dt)2 + (dt)2 = 2dt2 (A.16)

giving the transformed line integral as:

l1(Nj) =
1√
2

∫ t=1

t=0

(
−a1j + a2j + bjt + b(1− t)

)√
2 dt (A.17)

= −a1j + a2j + bj (A.18)

After repeating the above integration procedure for l2 and l3 we get the
following set of equations for i = 1, 2, 3:−1 1 1

0 1 0
1 0 0

a1i
a2i
bi

 =

 1 0 0
0 1 0
0 0 1

 (A.19)

Solving gives:
a11 = a21 = a12 = a23 = 0 (A.20a)

b1 = a22 = a13 = b3 = 1 (A.20b)

b2 = −1 (A.20c)
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Appendix B. Conforming affine transform

We define an affine map Fk between a general cell K in the global coordi-
nate system x and the reference cell K̂ as:

K̂ 3 x = FK(x̂) = BK x̂ + bK (B.1)

To ensure that we construct an H(curl; Ω) conforming field across the trian-
gulation Th we must use the covariant vector-field transform. To obtain the
element shape functions Ni(x) from the reference shape functions N̂i(x̂) we
use the following covariant transform:

Ni(x) = (D̂FK
−T

N̂i) ◦ F−1
K (x) (B.2)

where D̂FK ∈ R2×2 is the Jacobian of the element map:

D̂FK =
∂

∂x̂
FK(x̂) (B.3)

This transform is the same as that used to transform the gradients of the shape
functions in the standard H1(Ω) conforming finite element methods.

In the case of the affine map defined above the Jacobian is simply a con-
stant for each K:

D̂FK = BK (B.4)
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