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The focus of this paper is the description and numerical validation of a computational method where stress

analysis can be performed directly from computer-aided design data without mesh generation. The clear benefit

of the approach is that no mesh needs to be generated prior to running the analysis. This is achieved by

utilising the isogeometric concept whereby computer-aided design data are used to construct not only the

geometry discretisation but also the displacement and traction approximations. In this manner, significant

savings can be made in the engineering design and analysis process. This paper also demonstrates that,

compared with a standard boundary-element method implementation using quadratic Lagrangian shape

functions, superior accuracy is achieved using the present approach for the same number of degrees of

freedom. It further illustrates practical applications of the method, comparing against results obtained with a

standard boundary-element method and finite-element method for verification. In addition, a propeller is

analysed as a sample to show the ability of the present method to handle complex three-dimensional

geometries.

Notation
a basis function index
Ba control point coordinate
Cij jump term
da

j displacement coefficient component
Na, p B-spline basis function
n basis function number
p basis function order
qa

j traction coefficient component
Ra, p non-uniform rational B-splines (NURBS) basis

function
Tij traction fundamental solution
ti traction component
Uij displacement fundamental solution
ui displacement component
wa NURBS weight
x9 source point coordinate
x field point coordinate
ˆ domain boundary
ª parametric representation of domain boundary
! parametric coordinate

1. Introduction
The finite-element method (FEM) (Strang and Fix, 1973; Zienkie-

wicz, 1971) and boundary-element method (BEM) (Banerjee and

Butterfield, 1981) are two numerical techniques that have seen

extensive development for engineering analysis. The FEM is

applicable to a wide variety of engineering problems and has

enjoyed much commercial success since its inception. The BEM

possesses certain advantages over the FEM due to the requirement

for only a boundary discretisation (in contrast to a domain

discretisation for the FEM), essentially reducing the dimension-

ality of the problem. This is at the cost of a full matrix ‘inversion’

and technicalities related to numerical integration. In conventional

implementations, both methods use polynomial functions to create

a discretisation of the geometry and unknown fields (e.g. displace-

ment), requiring a pre-processing procedure known as ‘meshing’

to be carried out. To create an appropriate ‘analysis-ready’ mesh

is costly and time consuming, particularly in the case of

complicated three-dimensional (3D) domains where large numer-

ical errors can result if an appropriate mesh is not constructed.

To suppress the need to generate analysis-ready meshes, the
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concept of isogeometric analysis (IGA) (Hughes et al., 2005) was

introduced to FEM (IGAFEM). The key ideas behind such an

approach are as follows.

j The same basis functions as used by computer-aided design

(CAD) (e.g. non-uniform rational B-splines (NURBS) (Piegl

and Tiller, 1997), T-splines (Sederberg et al., 2003) etc.) are

used to approximate not only the geometry of the domain, but

also the unknown fields.

j The unknown fields then become associated with control

points (used to define the CAD geometry) rather than nodal

points.

j The geometry of the problem is defined exactly at all stages

of analysis.

Since this seminal development, IGAFEM has been applied

successfully in many other areas including structural analysis

(Cottrell et al., 2006), shape optimisation (Wall et al., 2008),

shell analysis (Benson et al., 2010), contact problems (Temizer et

al., 2010) and electromagnetics (Buffa et al., 2010).

However, in IGAFEM, a mismatch still remains between the

information provided by CAD and the discretisation required for

numerical analysis. The FEM requires a domain representation of

the geometry while CAD provides only a surface representation

requiring certain pre-processing steps to be carried out. In the

case of the BEM where only a surface representation is required

for analysis, it is found that the isogeometric concept is a

particularly nice fit since both deal with quantities defined

entirely on the boundary. The first isogeometric BEM (IGABEM)

(Simpson et al., 2012) for two-dimensional (2D) elastostatic

analysis was proposed in 2011, and more accurate results per

degree of freedom were achieved compared with a conventional

BEM using quadratic Lagrangian shape functions. Compared

with IGAFEM, IGABEM possesses the particular advantage that

CAD data can be used directly for analysis without the need to

generate a discretisation of the domain.

In this paper, the authors utilise the flexible properties of

IGABEM to analyse civil engineering structures where the

benefits over conventional BEM and FEM procedures are demon-

strated. The paper is organised as follows. Section 2 presents

some basic knowledge of non-uniform rational B-splines, the

parametric functions predominant in CAD. The IGABEM is

outlined in Section 3, and three numerical examples to demon-

strate the efficiency and accuracy of the method are given in

Section 4. The paper concludes with Section 5.

2. B-spline curves and non-uniform rational
B-splines

Since isogeometric methods rely on the use of basis functions

generated by CAD, some discussion of such functions is in order

here. The predominant functions are non-uniform rational B-

splines (NURBS), but the algorithms used for their evaluation are

extended from those used for B-splines. Both B-splines and

NURBS are thus introduced, highlighting certain features useful

for analysis.

2.1 B-spline curves
B-splines can be considered a subset of NURBS. They are affine

mappings from the parametric space to the physical space. The

expression of a B-spline curve can therefore be written as

C(!) ¼
Xn

a¼1

Na, p(!)Ba
1:

where ! denotes the parametric space coordinate, Ba the control

point coordinates, n the number of basis functions, C the global

coordinates interpolated by the curve and Na, p the B-spline basis

functions where a denotes the index of the basis function and p

the order of the basis function (see Figures 1 and 2).

In light of Equation 1, it can be seen that a B-spline curve is

determined by three things.

j Control points. These do not necessarily lie on the boundary

of the domain. The piecewise linear interpolation of the

control points generates the control polygon. The control

polygon is useful for interactive design because it provides

intuitive geometrical information.

!
0 0 00 1 2 3 4 4 4 4

Knot Parametric mesh

Figure 1. Parametric representation of B-spline

Control point
Control polygon

Curve

Knot

Figure 2. Physical representation of B-spline
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j Basis functions. Every basis function is associated with a

control point. The basis function plays a key role in IGA,

which will be detailed in the next section.

j Parametric space. The parametric space is always structured.

It is a straight line, rectangle or cuboid in one-dimensional,

2D or 3D spaces respectively. In some cases, the physical

space is a mapping from more than one parametric space. In

this case, the problem is referred to as a multiple-patch

problem where each parametric space is called a patch.

2.2 B-spline basis functions
Before the introduction of B-spline basis functions, it is necessary

to start with the concept of a knot vector, which has a direct

influence on the resulting basis functions.

A knot vector is defined as a set of non-decreasing real numbers

in the parametric space

f!1, !2, . . ., !nþpþ1g !i 2 R

where i denotes the knot index, p is the curve order and n is the

number of basis functions or control points. Each real number !i

is called a knot. The number of knots is given by m ¼ n + p + 1.

The half-open interval ½!i, !iþ1) is called a knot span.

Within the knot vector, knots can be repeated where, for example,

{0, 0, 0, 1, 1, 2, 2, 3, 3, 3} is a valid knot vector. Knots with

different values can be viewed as different break points that

divide the parametric space into different elements. Hence, the

physical interpretation of the knots can be explained as the

parametric coordinates of the element edges, while the ‘knot

span’ between two knots with different values can be viewed as

the definition of elements in the parametric space. The insertion

of a new knot will split an element, much like h-refinement in the

FEM. However, the repetition of existing knots will not increase

the number of elements, but can be used to decrease the order of

the basis functions. For example, the knot vector

{0, 0, 0, 1, 1, 2, 2, 3, 3, 3} has ten knot values and nine knot

spans, [0, 0), [0, 0), [0, 1), [1, 1), [1, 2), [2, 2), [2, 3), [3, 3) and

[3, 3), but only three elements, [0, 1], [1, 2] and [2, 3].

The knot vector is open if its first and last knot values are

repeated p + 1 times, such as {0, 0, 0, 1, 2, 3, 4, 4, 4}. The open

knot vector is the standard in CAD, so all the examples in this

paper use open knot vectors. The knot vector values can be

normalised without affecting the resulting B-spline. Therefore,

{0, 0, 0, 1, 2, 3, 4, 4, 4} is equivalent to {0, 0, 0, 1/4, 2/4, 3/4,

1, 1, 1}. It is called a uniform knot vector if the knots are

uniformly spaced, for example {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}.

It is necessary to differentiate control points and knots in IGA

with nodes in the standard FEM or BEM. In the standard FEM

and BEM, nodes are placed on the domain or the boundary to

discretise the geometry and the unknown fields. In IGA, the

equivalent of a node is a control point, which may lie outside the

domain. The knot values are used to divide the space into

elements.

With the concept of a knot vector, we can now define B-spline

basis functions. There exist numerous definitions of B-spline

basis functions but, for convenience in implementation, the Cox–

de Boor recursion formula (Cox, 1971; de Boor, 1972) is used

here

Na,0(!) ¼
1, if !a < ! , !aþ1

0, otherwise

(

2:

Na, p(!) ¼ !$ !a

!aþp $ !a

Na, p$1(!)

þ
!aþpþ1 $ !

!aþpþ1 $ !aþ1

N aþ1, p$1(!)
3:

In essence, a B-spline basis function is a piecewise polynomial

function. The functions are C1 within elements and Cp$m on

element boundaries, where m is the number of knot repetitions.

From Figure 3, the following properties of B-spline basis func-

tions can be observed.

j Local support – the B-spline basis function Na, p is always

non-negative in knot spans of ½!a, !aþpþ1) This has an

important significance for interactive design: the change of

one control point only affects the local part of the curve,

giving great convenience for curve modification.

j Non-interpolatory – the B-spline basis functions do not

interpolate the control points except at the start point,

end point and any point whose knot value is repeated p

times.

0 0·5 1·0 1·5 2·0 2·5 3·0 3·5 4·0
0

0·1
0·2
0·3
0·4
0·5
0·6
0·7
0·8
0·9
1·0

!

N3,3

Na,p( )!

N1,3

N2,3

N4,3
N5,3

N6,3

N7,3

Figure 3. B-spline basis functions with knot vector

{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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The continuity and differentiability of a B-spline curve is

inherited directly from its basis functions where it is found that

the continuity of a B-spline curve is at least Cp$m:

2.3 NURBS
NURBS are important parametric curves in CAD and are seen as

the industry standard with implementation in several commercial

software packages. In addition, all numerical examples in this

paper are represented by NURBS. NURBS are developed from

B-spline curves but can offer significant advantages due to their

ability to represent a wide variety of geometric entities. The

expression defining NURBS interpolation is very similar to that

of B-splines

C(!) ¼
Xn

a¼1

Ra, p(!)Ba
4:

in which Ba is the set of control point coordinates and Ra, p are

NURBS basis functions, defined as

Ra, p(!) ¼ N a, p(!)wa

W (!)
¼ N a, p(!)waP n

âa¼1Nâa, pwâa5:

where Na, p is the standard B-spline basis function, W(!) is the

weighting function, and wa is the weight that is associated with

Na, p and influences the distance between the curve and control

points, with higher values drawing the curve closer to that point

(see Figures 4 and 5). When all of the weights are equal to 1, the

NURBS reduces to a B-spline curve. The NURBS basis function

is a piecewise rational function.

2.4 Multiple-patch problem
For some complex geometries, especially for multiply connected

domains, the geometry is obtained by the mapping from multiple

parametric spaces. In this case, each parametric space is called a

patch. IGABEM possesses advantages over IGAFEM for pro-

blems with multiple patches. In IGAFEM, the geometry is the

domain representation, and thus the plate in Figure 6 is a plane

divided into four patches. To guarantee geometric continuity we

must join patches along each of the patch boundaries. Using

current geometrical algorithms, only C0 continuity along each of

the patch boundaries can be guaranteed. For the boundary

representation, the geometry of the same example is determined

Control point
Control polygon

Curve

Knot Weight 1!

Figure 4. NURBS with weights {1, 1, 1, 1, 1, 1, 1}

Control point
Control polygon

Curve

Knot
Weight 3!

Figure 5. NURBS with weights {1, 1, 1, 1, 3, 1, 1}

Element
boundary

Patch
boundary

Domain
boundary

Domain
boundary

Figure 6. Multiple-patch problem of plate with four holes
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by two curves – an outer boundary and inner boundary – which

are two geometrically independent patches and therefore do not

need to be connected.

3. IGABEM formulation
The idea of IGA relies on the fact that the geometric represent-

ation in CAD can also be used to approximate the unknown fields

in numerical simulation. The only difference is that, in computa-

tional geometry, the nodal parameters are the coordinates of the

control points in the physical space, but in analysis they are

associated with unknown field variables. A natural idea is to use

the same control points and the same basis functions to discretise

the unknown fields.

Let us consider 2D linear elastostatic problems as an example to

derive the equations of the isogeometric BEM. The displacement

boundary integral equation is

Cij(x9)uj(x9)þ2

ð

ˆ
Tij(x9, x)uj(x) dx

¼
ð

ˆ
Uij(x9, x)tj(x) dx

6:

where x9 is the source point, x is the field point and ˆ is the

boundary. Uij and Tij are the fundamental solutions, which

depend on the material properties and the distance between x9

and x. uj, and tj are the components of the displacement and

traction around the boundary, respectively. The physical signifi-

cance of the fundamental solution is the influence of a concen-

trated point force at a given source point on the field point. Cij is

the jump term, which only depends on the geometry of the

boundary at the source point, and 2
Ð

represents integration in the

Cauchy principal value limiting sense.

Discretising the displacement and the traction fields with NURBS

basis functions yields

uj(!) ¼
Xn

a¼1

Ra, p(!)da
j ¼

Xn

a¼1

Ra(!)da
j

7:

tj(!) ¼
Xn

a¼1

Ra, p(!)qa
j ¼

Xn

a¼1

Ra(!)qa
j

8:

where subscript p in the basis function has been omitted for

simplicity and da
j and qa

j denote the nodal parameters related to

displacement and traction, respectively. Every nodal parameter

corresponds to a control point. Substituting Equations 7 and 8

into the displacement boundary integral equation (Equation 6)

yields the system of equations

Xn

a¼1

Cij(x9)Ra(!9)
# $

da
j

þ
Xn

a¼1

2

ð

ª
T ij(x9, x(!))Ra(!)J (!) d!

" #
da

j

¼
Xn

a¼1

ð

ª
Uij(x9, x(!))Ra(!)J (!) d!

" #
qa

j
9:

where !9 denotes the location of the source point in parametric

space, ª is the parametric representation of ˆ and J is the

determinant of the Jacobian matrix. Because the basis function

Ra is locally supported, the integration is performed in a

piecewise manner. In addition, the domain of integration will be

mapped into the domain [$1, 1] to allow Gauss–Legendre

quadrature to be used.

Equation 9 can be written in matrix notation as

[H]fug ¼ [G]ftg10:

Ha
ij ¼ 2

ð

ª
T ij(x9, x(!))Ra(!)J (!)
# $

d!

þ Cij(x9)Ra(!9)11:

Ga
ij ¼

ð

ª
U ij(x9, x(!))Ra(!)J (!)
# $

d!
12:

[H] is a coefficient matrix calculated from the jump terms and

integral of Tij for every collocation point, u is the column vector

containing all the displacement nodal unknowns da
j : [G] is a

coefficient matrix containing the integral of Uij and t is the

column vector containing all the traction nodal unknowns qa
j :

The strongly singular integration and weakly singular integration

need to be evaluated for [H] and [G], respectively. Owing to the

local support properties of B-spline basis functions, the singular-

ity integration is only performed for the coefficients associated

with the nodal unknowns whose basis function support contains

the element that the collocation point resides in.

The following expressions illustrate the matrix entries

!HH
ac
ij ¼ 2

ð

ª
T ij(x

c, x(!))Ra(!)J (!) d!
13:

92

Engineering and Computational Mechanics
Volume 166 Issue EM2

Stress analysis without meshing:
isogeometric boundary-element method
Lian, Simpson and Bordas



~HH
ac

ij ¼ Cij(x
c)Ra(!9)14:

where c is a collocation point index. Consider an arbitrary closed

curve with open knot vector {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}. The

parametric coordinates of control points can be chosen as

{0, 0.5, 1.5, 2.5, 3.5, 4, 4.5}. Therefore, the [H] matrix entries are

!HH
11
ij þ !HH

81
ij þ ~HH

11

ij
!HH

21
ij

!HH
31
ij

!HH
41
ij

!HH
51
ij

!HH
61
ij

!HH
71
ij

!HH
12
ij þ !HH

82
ij þ ~HH

12

ij
!HH

22
ij þ ~HH

22

ij
!HH

32
ij þ ~HH

32

ij
!HH

42
ij

!HH
52
ij

!HH
62
ij

!HH
72
ij

!HH
13
ij þ !HH

83
ij

!HH
23
ij þ ~HH

23

ij
!HH

33
ij þ ~HH

33

ij
!HH

43
ij þ ~HH

43

ij
!HH

53
ij

!HH
63
ij

!HH
73
ij

!HH
14
ij þ !HH

84
ij

!HH
24
ij

!HH
34
ij þ ~HH

34

ij
!HH

44
ij þ ~HH

44

ij
!HH

54
ij þ ~HH

54

ij
!HH

64
ij

!HH
74
ij

!HH
15
ij þ !HH

85
ij

!HH
25
ij

!HH
35
ij

!HH
45
ij þ ~HH

45

ij
!HH

55
ij þ ~HH

55

ij
!HH

65
ij þ ~HH

65

ij
!HH

75
ij

!HH
16
ij þ !HH

86
ij

!HH
26
ij

!HH
36
ij

!HH
46
ij

!HH
56
ij

!HH
66
ij þ ~HH

66

ij
!HH

76
ij

!HH
17
ij þ !HH

87
ij þ ~HH

87

ij
!HH

27
ij

!HH
37
ij

!HH
47
ij

!HH
57
ij

!HH
67
ij þ ~HH

67

ij
!HH

77
ij þ ~HH

77

ij

2

666666666666666664

3

777777777777777775
15:

The boundary conditions are applied by placing all unknowns on

the left-hand side and all known values on the right-hand side. To

visualise this, it is convenient to write Equation 10 as

H1 H2½ % u1

u2

% &
¼ G1 G2½ % t1

t2

% &

16:

where the indices 1 and 2 denote the values corresponding to the

Neumann and Dirichlet boundaries, respectively. All unknowns

are moved to the left-hand side and all known values are moved

to the right-hand side, giving

$G1 H2½ % t1

u2

% &
¼ $H1 G2½ % u1

t2

% &

17:

Performing matrix–vector multiplication on the right-hand side,

the terms in this equation are denoted as

A½ % ¼ $G1 H2½ %18:

xf g ¼ t1

u2

% &

19:

bf g ¼ $H1 G2½ % u1

t2

% &

20:

giving the final system of equations

A½ % xf g ¼ bf g21:

Figure 7 is the flowchart of the IGABEM implementation for a

single-patch problem. The shaded blocks indicate different parts

from standard BEM. The multiple-patch implementation is

similar, except that an additional loop is added over all the

patches before the loop over the collocation points. The code

structure of IGABEM preserves the basic framework of the

standard BEM, so it can be incorporated easily into any BEM

code.

4. Numerical examples

4.1 Pressure vessel
The first example is a pressure vessel, which is a 2D plain strain

problem. Due to symmetry of the problem, only a quarter of the

pressure vessel is studied, as illustrated in Figure 8 where the

geometry, material properties and boundary conditions are also

defined. A second-order approximation (p ¼ 2) is chosen. In this

case, the minimum number of control points is shown in Figure

9. Appendix 1 provides the appropriate coordinates and weights.

The knot vector is defined as

f0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,

9, 9, 10, 10, 11, 11, 11g

The weights are defined as
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1, 1, 1,
21=2

2
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

%

1, 1, 1, 1, 1, 1

&

There is no analytical solution for this problem, but we compare

the L2 norm of IGABEM

uj jj jL2
¼

ð

ˆ

Xn

i¼1

(ui)
2

 !1=2

dˆ

and that of the BEM with quadratic Lagrangian shape func-

tions, both of which converge to the same solution as shown

in Figure 10. Hence, we take this limit as the reference

solution to calculate the L2 relative error. Figure 11 shows that

IGABEM not only achieves more accurate results than the

conventional BEM, but also superior convergence. This is an

important result, since this shows that, for an equivalent

number of degrees of freedom (DOF), IGABEM is more

accurate than the conventional quadratic BEM. In addition, the

deformed profile of IGABEM compares very favourably with

the result obtained with the FEM implementation, as shown in

Figure 12. In the FEM implementation, linear triangular

elements were used.

N Y

Y

Stop

Loop over
collocation

points

Loop over
elements

Singular
integration

GL
integration

SST
integration

Telles
transformation

Assembly
submatrices into

andH G

Strongly
singular

N

Start

Read
input data

Generate
connectivities

and collocation
points

Apply boundary
conditions

Solve
equation

Output

Figure 7. IGABEM flowchart (GL, Gauss–Legendre; SST,

singularity subtraction technique)
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4.2 Dam
The geometry of a dam modelled under plane strain is illustrated

in Figure 13 where a hydrostatic loading is present and body

forces act throughout the structure. The elastic modulus is

E ¼ 1:31 3 1011 N=m2 with Poisson’s ratio " ¼ 0:25: The hydro-

static water pressure is given by a normal traction tn ¼
$½9:81 3 1000 3 (3:25$ y)% N=m2 and tangential traction tt ¼ 0:

Using a density of r ¼ 2300 kg=m3 and gravitational accelera-

tion of 9:81 m=s2, the body forces throughout are given by

bx ¼ 0 and by ¼ $2300 3 9:81 N=m3:

The dam example demonstrates a multiple-patch problem in

IGABEM where the boundary of the geometry consists of two

curves – an outer boundary and an inner boundary – which form

two parametric spaces. In this example, the two curves have the

P 100 N/m! 2

R 60 cm!

E 2·07 10 N/m
0·16

! "
!

5 2

ν

(0, 0)

(45, 100)

(45, 75)

(0, 15)
(0, 40)

(25, 75)

(25, 40)
(10, 40)

(100, 100)

(100, 60)

(40, 0)

Figure 8. Pressure vessel problem definition

Original geometry

Control points

Collocation points

Element edges

Figure 9. NURBS curve, control points, collocation points and

element edges for pressure vessel problem

0 1000 2000 3000 4000 5000
1·405

1·410

1·415

1·420

DOF

L 2
no

rm

IGABEM

Quadratic BEM

Figure 10. The L2 norm of quadratic BEM and IGABEM for

pressure vessel problem

102 10310#4

10#3

10#2

DOF

L 2
er

ro
r

IGABEM
Quadratic BEM

Figure 11. The L2 relative error for quadratic BEM and IGABEM

for pressure vessel problem

FEM

IGABEM

Figure 12. IGABEM and FEM pressure vessel problem: deformed

shape
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same order (p ¼ 2) and in the case of two elements per line, the

control point coordinates and weights are in Appendix 2 and

Appendix 3, respectively.

For the outer boundary, the knot vector is given by

f0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,

8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,

14, 14, 15, 15, 16, 16, 16g

For the inner boundary, the knot vector is given by

f0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 6g

Figure 14 illustrates the NURBS curve, collocation points,

control points and element edges for the boundary of the dam

defining the IGABEM discretisation. With IGABEM, we use

two elements per line in the present case to arrive at the

deformed profile shown in Figure 15, where the result is

compared to a FEM implementation with linear triangular

elements. Once again, the IGABEM result agrees very well with

the FEM.

4.3 Propeller
The third example applies the present method to a 3D propeller

(Figure 16) to illustrate the ability of IGABEM to handle

complex geometries. A traction of 100 MPa is applied in the

positive z direction on each of the blades with zero displacement

prescribed on the inner radius. Young’s modulus E is 100 GPa

and Poisson’s ratio " is 0.3. The initial and deformed shapes are

shown in Figure 16 and the von Mises stress is illustrated in

Figures 17 and 18.

This example illustrates perhaps the most important concept of

this paper, which is that analysis can be performed directly on a

CAD geometry without meshing, representing a significant step

forward in conceptual design for engineering analysis.

5. Conclusion
The formulation of an isogeometric BEM for elastostatic analysis

has been outlined, with the changes required over a conventional

BEM implementation clearly demonstrated. The method circum-

32
·5

20

120

Figure 13. Dam problem definition (dimensions in metres)

Original geometry
Control points
Collocation points
Element edges

Figure 14. NURBS curve, control points, collocation points and

element edges for dam problem

IGABEM
FEM

Figure 15. IGABEM and FEM dam problem: deformed shape

X
Y

Z

Displacement magnitude
623·9811

600

400

200

0

Figure 16. Propeller: geometry and deformed shape (unit: mm)
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vents the task of mesh generation, thereby bringing the fields of

design and analysis closer with significant advantages realised for

early stage design. To demonstrate the accuracy of the method,

examples were shown that compare against a standard boundary-

element formulation using Lagrangian basis functions and also

with a standard finite-element implementation. In addition, a 3D

example was presented to illustrate the ability of the method to

handle extremely complex geometries without the need to gener-

ate a mesh.

Appendix 1: Control points and weights of
the pressure vessel

X
YZ

von Mises stress
1·54 10" 6

1·00 10" 6

1·00 10" 5

1·00 10" 4

1·00 10" 3

100

Figure 17. Propeller: von Mises stress (unit: MPa)

X

Y
Z

von Mises stress
1·54 10" 6

1·00 10" 6

1·00 10" 5

1·00 10" 4

1·00 10" 3

100

Figure 18. Close up of propeller peak von Mises stress (unit: MPa)

Index x y Weight

1 0 0 1
2 10 0 1
3 30 x 1
4 40 0 1
5 40 24.8528137424 0.8535533906
6 75.1471862576 60 0.8535533906
7 100 60 1
8 100 70 1
9 100 90 1
10 100 100 1
11 86.25 100 1
12 58.75 100 1
13 45 100 1
14 45 93.75 1
15 45 81.25 1
16 45 75 1
17 40 75 1
18 30 75 1
19 25 75 1
20 25 66.25 1
21 25 48.75 1
22 25 40 1
23 21.25 40 1
24 13.75 40 1
25 10 40 1
26 10 33.75 1
27 10 21.25 1
28 10 15 1
29 7.5 15 1
30 2.5 15 1
31 0 15 1
32 0 11.25 1
33 0 3.75 1
34 0 0 1
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Appendix 2: Control points and weights of
the dam outer boundary

Index x y Weight

1 $3 $20 1
2 22.75006225 $20.00000075 1
3 74.25018675 $20.00000225 1
4 100.000249 $20.000003 1
5 100.0001485 $15.00000225 1
6 99.9999475 $5.00000075 1
7 99.999847 0 1
8 97.589728 0 1
9 92.76949 0 1
10 90.359371 0 1
11 89.5309455321 0 0.8535533906
12 88.359375 1.1715740468 0.8535533906
13 88.359375 2.000002 1
14 88.359375 2.76953275 1
15 88.359375 4.30859425 1
16 88.359375 5.078125 1
17 84.06283075 5.078125 1
18 75.46974225 5.078125 1
19 71.173198 5.078125 1
20 67.5507928424 5.078125 0.96105
21 60.8696555446 7.8807965572 0.96105
22 58.331384 10.46514 1
23 54.66650675 14.19651125 1
24 47.33675225 21.65925375 1
25 43.671875 25.390625 1
26 40.625 27.421875 1
27 34.53125 31.484375 1
28 31.484375 33.515625 1
29 29.453125 33.26171875 1
30 25.390625 32.75390625 1
31 23.359375 32.5 1
32 23.563557 29.7959275 1
33 23.971921 24.3877825 1
34 24.176103 21.68371 1
35 24.2935527074 20.1282857015 0.993954
36 24.0432981685 17.0186352549 0.993954
37 23.67862 15.502011 1
38 22.815829 11.91383875 1
39 21.1939395728 5.1687305659 0.8927115
40 20.227456 1.149322 0.785423
41 20.0726719675 0.505591894 0.8927115
42 19.3600570142 $4.26852132573430 3 10$6 1
43 18.769013 0 1
44 13.32675975 0 1
45 2.44225325 0 1
46 –3 0 1
47 –3 $5 1
48 –3 $15 1
49 –3 $20 1
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Appendix 3: Control points and weights of
the dam inner boundary
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Index x y Weight

1 32 0 1
2 31 1.5 1
3 30.75 4 1
4 32.25 6 1
5 34.75 7.75 1
6 38.25 9.25 1
7 41.75 9.25 1
8 45.25 7.75 1
9 47.75 6 1
10 49.25 4 1
11 49 1.5 1
12 48 0 1
13 44 0 1
14 36 0 1
15 32 0 1
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