Results 1-5 of 5.
((uid:50008503))

Bookmark and Share    
Full Text
Peer Reviewed
See detailCoupled CFD-DEM with Heat and Mass transfer to Investigate the Melting of a Granular Packed Bed
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Chemical Engineering Science (2017)

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the ... [more ▼]

The eXtended Discrete Element Method (XDEM) platform which is a Coupled Eulerian-Lagrangian framework with heat and mass transfer, is extended for melting of granular packed beds. In this method, the fluid is simulated by computational fluid dynamics (CFD) and the soft-sphere discrete element approach (DEM) is used for the particle system. A four-way coupling accounts for solid-liquid interaction via drag and buoyancy forces and the collisions between the particles and the walls. The contact forces between the particles and wall-particle contacts have been calculated by the hertz-mindlin model. The particles heat up, melt and shrink due to heat and mass exchange, and the temperature distributions inside the particles are described. In order to validate the method, melting of a single ice particle and of a packed bed of ice in flowing water have been carried out. Very good agreement between the simulation and experiment has been achieved. The effects of the temperature and velocity of flowing water on melting rate are also discussed. [less ▲]

Detailed reference viewed: 26 (7 UL)
See detailApplication of the extended discrete element method (XDEM) in the melting of a single particle
Baniasadi, Mehdi UL; Baniasadi, Maryam UL; Peters, Bernhard UL

in Baniasadi, Mehdi (Ed.) Application of the extended discrete element method (XDEM) in the melting of a single particle (2016, July 19)

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is ... [more ▼]

In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is the extension of Discrete Element Method (DEM) by considering thermodynamic state such as temperature distribution and is able to link with Computational Fluid Dynamics (CFD) for fluid phase. In order to provide more accurate results, multiscale method was used. The model is validated by comparing predicted results with existing experimental data for melting of a single ice particle in a water bath. In addition, the model has the capability to be extended to the packed bed of particles with different size and properties to produce different liquid phases. [less ▲]

Detailed reference viewed: 42 (17 UL)