Results 1-20 of 169.
((uid:50002182))

Bookmark and Share    
Full Text
Peer Reviewed
See detailPROFICIENT: Productivity Tool for Semantic Interoperability in an Open IoT Ecosystem
Kolbe, Niklas UL; Robert, Jérémy UL; Kubler, Sylvain et al

in Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2017)

The Internet of Things (IoT) is promising to open up opportunities for businesses to offer new services to uncover untapped needs. However, before taking advantage of such opportunities, there are still ... [more ▼]

The Internet of Things (IoT) is promising to open up opportunities for businesses to offer new services to uncover untapped needs. However, before taking advantage of such opportunities, there are still challenges ahead, one of which is the development of strategies to abstract from the heterogeneity of APIs that shape today's IoT. It is becoming increasingly complex for developers and smart connected objects to efficiently discover, parse, aggregate and process data from disparate information systems, as different protocols, data models, and serializations for APIs exist on the market. Standards play an indisputable role in reducing such a complexity, but will not solve all problems related to interoperability. For example, it will remain a permanent need to help and guide data/service providers to efficiently describe the data/services they would like to expose to the IoT. This paper presents PROFICIENT, a productivity tool that fulfills this need, which is showcased and evaluated considering recent open messaging standards and a smart parking scenario. [less ▲]

Detailed reference viewed: 16 (1 UL)
Full Text
See detailTowards a Plug-and-Play and Holistic Data Mining Framework for Understanding and Facilitating Operations in Smart Buildings
Li, Daoyuan UL; Bissyande, Tegawendé François D Assise UL; Klein, Jacques UL et al

Report (2017)

Nowadays, a significant portion of the total energy consumption is attributed to the buildings sector. In order to save energy and protect the environment, energy consumption in buildings must be more ... [more ▼]

Nowadays, a significant portion of the total energy consumption is attributed to the buildings sector. In order to save energy and protect the environment, energy consumption in buildings must be more efficient. At the same time, buildings should offer the same (if not more) comfort to their occupants. Consequently, modern buildings have been equipped with various sensors and actuators and interconnected control systems to meet occupants’ requirements. Unfortunately, so far, Building Automation Systems data have not been well-exploited due to technical and cost limitations. Yet, it can be exceptionally beneficial to take full advantage of the data flowing inside buildings in order to diagnose issues, explore solutions and improve occupant-building interactions. This paper presents a plug-and-play and holistic data mining framework named PHoliData for smart buildings to collect, store, visualize and mine useful information and domain knowledge from data in smart buildings. PHoliData allows non technical experts to easily explore and understand their buildings with minimum IT support. An architecture of this framework has been introduced and a prototype has been implemented and tested against real-world settings. Discussions with industry experts have suggested the system to be extremely helpful for understanding buildings, since it can provide hints about energy efficiency improvements. Finally, extensive experiments have demonstrated the feasibility of such a framework in practice and its advantage and potential for buildings operators. [less ▲]

Detailed reference viewed: 11 (1 UL)
Full Text
Peer Reviewed
See detailRaising Time Awareness in Model-Driven Engineering
Benelallam, Amine; Hartmann, Thomas UL; Mouline, Ludovic UL et al

in 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (2017, September)

The conviction that big data analytics is a key for the success of modern businesses is growing deeper, and the mobilisation of companies into adopting it becomes increasingly important. Big data ... [more ▼]

The conviction that big data analytics is a key for the success of modern businesses is growing deeper, and the mobilisation of companies into adopting it becomes increasingly important. Big data integration projects enable companies to capture their relevant data, to efficiently store it, turn it into domain knowledge, and finally monetize it. In this context, historical data, also called temporal data, is becoming increasingly available and delivers means to analyse the history of applications, discover temporal patterns, and predict future trends. Despite the fact that most data that today’s applications are dealing with is inherently temporal current approaches, methodologies, and environments for developing these applications don’t provide sufficient support for handling time. We envision that Model-Driven Engineering (MDE) would be an appropriate ecosystem for a seamless and orthogonal integration of time into domain modelling and processing. In this paper, we investigate the state-of-the-art in MDE techniques and tools in order to identify the missing bricks for raising time-awareness in MDE and outline research directions in this emerging domain. [less ▲]

Detailed reference viewed: 19 (0 UL)
Full Text
Peer Reviewed
See detailKnowledge-based Consistency Index for Fuzzy Pairwise Comparison Matrices
Kubler, Sylvain UL; Derigent, William; Voisin, Alexandre et al

in Knowledge-based Consistency Index for Fuzzy Pairwise Comparison Matrices (2017, July 10)

Abstract—Fuzzy AHP is today one of the most used Multiple Criteria Decision-Making (MCDM) techniques. The main argument to introduce fuzzy set theory within AHP lies in its ability to handle uncertainty ... [more ▼]

Abstract—Fuzzy AHP is today one of the most used Multiple Criteria Decision-Making (MCDM) techniques. The main argument to introduce fuzzy set theory within AHP lies in its ability to handle uncertainty and vagueness arising from decision makers (when performing pairwise comparisons between a set of criteria/alternatives). As humans usually reason with granular information rather than precise one, such pairwise comparisons may contain some degree of inconsistency that needs to be properly tackled to guarantee the relevance of the result/ranking. Over the last decades, several consistency indexes designed for fuzzy pairwise comparison matrices (FPCMs) were proposed, as will be discussed in this article. However, for some decision theory specialists, it appears that most of these indexes fail to be properly “axiomatically” founded, thus leading to misleading results. To overcome this, a new index, referred to as KCI (Knowledge-based Consistency Index) is introduced in this paper, and later compared with an existing index that is axiomatically well founded. The comparison results show that (i) both indexes perform similarly from a consistency measurement perspective, but (ii) KCI contributes to significantly reduce the computation time, which can save expert’s time in some MCDM problems. [less ▲]

Detailed reference viewed: 15 (1 UL)
Full Text
Peer Reviewed
See detailEnriching a Situation Awareness Framework for IoT with Knowledge Base and Reasoning Components
Kolbe, Niklas UL; Zaslavsky, Arkady; Kubler, Sylvain UL et al

in Modeling and Using Context (2017, July)

Theimportanceofsystem-levelcontext-andsituationaware- ness increases with the growth of the Internet of Things (IoT). This paper proposes an integrated approach to situation awareness by providing a ... [more ▼]

Theimportanceofsystem-levelcontext-andsituationaware- ness increases with the growth of the Internet of Things (IoT). This paper proposes an integrated approach to situation awareness by providing a semantically rich situation model together with reliable situation infer- ence based on Context Spaces Theory (CST) and Situation Theory (ST). The paper discusses benefits of integrating the proposed situation aware- ness framework with knowledge base and efficient reasoning techniques taking into account uncertainty and incomplete knowledge about situa- tions. The paper discusses advantages and impact of proposed context adaptation in dynamic IoT environments. Practical issues of two-way mapping between IoT messaging standards and CST are also discussed. [less ▲]

Detailed reference viewed: 30 (1 UL)
Full Text
Peer Reviewed
See detailTowards Semantic Interoperability in an Open IoT Ecosystem for Connected Vehicle Services
Kolbe, Niklas UL; Kubler, Sylvain UL; Robert, Jérémy UL et al

in 2017 IEEE Global Internet of Things Summit (GIoTS) Proceedings (2017, July)

A present challenge in today’s Internet of Things (IoT) ecosystem is to enable interoperability across hetero- geneous systems and service providers. Restricted access to data sources and services limits ... [more ▼]

A present challenge in today’s Internet of Things (IoT) ecosystem is to enable interoperability across hetero- geneous systems and service providers. Restricted access to data sources and services limits the capabilities of a smart city to improve social, environmental and economic aspects. Interoperability in the IoT is concerned with both, messaging interfaces and semantic understanding of heterogeneous data. In this paper, the first building blocks of an emerging open IoT ecosystem developed at the EU level are presented. Se- mantic web technologies are applied to the existing messaging components to support and improve semantic interoperability. The approach is demonstrated with a proof-of-concept for connected vehicle services in a smart city setting. [less ▲]

Detailed reference viewed: 86 (2 UL)
Full Text
Peer Reviewed
See detailImpact of Tool Support in Patch Construction
Koyuncu, Anil UL; Bissyande, Tegawendé François D Assise UL; Kim, Dongsun UL et al

Scientific Conference (2017, July)

In this work, we investigate the practice of patch construction in the Linux kernel development, focusing on the differences between three patching processes: (1) patches crafted entirely manually to fix ... [more ▼]

In this work, we investigate the practice of patch construction in the Linux kernel development, focusing on the differences between three patching processes: (1) patches crafted entirely manually to fix bugs, (2) those that are derived from warnings of bug detection tools, and (3) those that are automatically generated based on fix patterns. With this study, we provide to the research community concrete insights on the practice of patching as well as how the development community is currently embracing research and commercial patching tools to improve productivity in repair. The result of our study shows that tool-supported patches are increasingly adopted by the developer community while manually-written patches are accepted more quickly. Patch application tools enable developers to remain committed to contributing patches to the code base. Our findings also include that, in actual development processes, patches generally implement several change operations spread over the code, even for patches fixing warnings by bug detection tools. Finally, this study has shown that there is an opportunity to directly leverage the output of bug detection tools to readily generate patches that are appropriate for fixing the problem, and that are consistent with manually-written patches. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailAnalyzing Complex Data in Motion at Scale with Temporal Graphs
Hartmann, Thomas UL; Fouquet, François UL; Jimenez, Matthieu UL et al

in Proceedings of the 29th International Conference on Software Engineering and Knowledge Engineering (2017, July)

Modern analytics solutions succeed to understand and predict phenomenons in a large diversity of software systems, from social networks to Internet-of-Things platforms. This success challenges analytics ... [more ▼]

Modern analytics solutions succeed to understand and predict phenomenons in a large diversity of software systems, from social networks to Internet-of-Things platforms. This success challenges analytics algorithms to deal with more and more complex data, which can be structured as graphs and evolve over time. However, the underlying data storage systems that support large-scale data analytics, such as time-series or graph databases, fail to accommodate both dimensions, which limits the integration of more advanced analysis taking into account the history of complex graphs, for example. This paper therefore introduces a formal and practical definition of temporal graphs. Temporal graphs pro- vide a compact representation of time-evolving graphs that can be used to analyze complex data in motion. In particular, we demonstrate with our open-source implementation, named GREYCAT, that the performance of temporal graphs allows analytics solutions to deal with rapidly evolving large-scale graphs. [less ▲]

Detailed reference viewed: 52 (5 UL)
Full Text
Peer Reviewed
See detailThe Next Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling
Hartmann, Thomas UL; Moawad, Assaad; Fouquet, François UL et al

in Software & Systems Modeling (2017)

Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for ... [more ▼]

Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for systems composed of heterogeneous elements, which behave very differently, for instance as it is the case for cyber-physical systems andInternet of Things applications. Instead, to make smart deci-sions, such systems have to continuously refine the behavior on a per-element basis and compose these small learning units together. However, combining and composing learned behaviors from different elements is challenging and requires domain knowledge. Therefore, there is a need to structure and combine the learned behaviors and domain knowledge together in a flexible way. In this paper we propose to weave machine learning into domain modeling. More specifically, we suggest to decompose machine learning into reusable, chainable, and independently computable small learning units, which we refer to as microlearning units.These micro learning units are modeled together with and at the same level as the domain data. We show, based on asmart grid case study, that our approach can be significantly more accurate than learning a global behavior, while the performance is fast enough to be used for live learning. [less ▲]

Detailed reference viewed: 68 (7 UL)
Full Text
Peer Reviewed
See detailAn Empirical Study on Mutation, Statement and Branch Coverage Fault Revelation that Avoids the Unreliable Clean Program Assumption
Titcheu Chekam, Thierry UL; Papadakis, Mike UL; Le Traon, Yves UL et al

in International Conference on Software Engineering (ICSE 2017) (2017, May 28)

Many studies suggest using coverage concepts, such as branch coverage, as the starting point of testing, while others as the most prominent test quality indicator. Yet the relationship between coverage ... [more ▼]

Many studies suggest using coverage concepts, such as branch coverage, as the starting point of testing, while others as the most prominent test quality indicator. Yet the relationship between coverage and fault-revelation remains unknown, yielding uncertainty and controversy. Most previous studies rely on the Clean Program Assumption, that a test suite will obtain similar coverage for both faulty and fixed (‘clean’) program versions. This assumption may appear intuitive, especially for bugs that denote small semantic deviations. However, we present evidence that the Clean Program Assumption does not always hold, thereby raising a critical threat to the validity of previous results. We then conducted a study using a robust experimental methodology that avoids this threat to validity, from which our primary finding is that strong mutation testing has the highest fault revelation of four widely-used criteria. Our findings also revealed that fault revelation starts to increase significantly only once relatively high levels of coverage are attained. [less ▲]

Detailed reference viewed: 186 (15 UL)
Full Text
Peer Reviewed
See detailEuphony: Harmonious Unification of Cacophonous Anti-Virus Vendor Labels for Android Malware
Hurier, Médéric UL; Suarez-Tangil, Guillermo; Dash, Santanu Kumar et al

in MSR 2017 (2017, May 21)

Android malware is now pervasive and evolving rapidly. Thousands of malware samples are discovered every day with new models of attacks. The growth of these threats has come hand in hand with the ... [more ▼]

Android malware is now pervasive and evolving rapidly. Thousands of malware samples are discovered every day with new models of attacks. The growth of these threats has come hand in hand with the proliferation of collective repositories sharing the latest specimens. Having access to a large number of samples opens new research directions aiming at efficiently vetting apps. However, automatically inferring a reference ground-truth from those repositories is not straightforward and can inadvertently lead to unforeseen misconceptions. On the one hand, samples are often mis-labeled as different parties use distinct naming schemes for the same sample. On the other hand, samples are frequently mis-classified due to conceptual errors made during labeling processes. In this paper, we analyze the associations between all labels given by different vendors and we propose a system called EUPHONY to systematically unify common samples into family groups. The key novelty of our approach is that no a-priori knowledge on malware families is needed. We evaluate our approach using reference datasets and more than 0.4 million additional samples outside of these datasets. Results show that EUPHONY provides competitive performance against the state-of-the-art. [less ▲]

Detailed reference viewed: 106 (11 UL)
Full Text
Peer Reviewed
See detailThe Multi-Generation Repackaging Hypothesis
Li, Li UL; Bissyande, Tegawendé François D Assise UL; Bartel, Alexandre UL et al

Poster (2017, May)

App repackaging is a common threat in the Android ecosystem. To face this threat, the literature now includes a large body of work proposing approaches for identifying repackaged apps. Unfortunately ... [more ▼]

App repackaging is a common threat in the Android ecosystem. To face this threat, the literature now includes a large body of work proposing approaches for identifying repackaged apps. Unfortunately, although most research involves pairwise similarity comparison to distinguish repackaged apps from their “original” counterparts, no work has considered the threat to validity of not being able to discover the true original apps. We provide in this paper preliminary insights of an investigation into the Multi-Generation Repackaging Hypothesis: is the original in a repackaging process the outcome of a previous repackaging process? Leveraging the Androzoo dataset of over 5 million Android apps, we validate this hypothesis in the wild, calling upon the community to take this threat into account in new solutions for repackaged app detection. [less ▲]

Detailed reference viewed: 88 (8 UL)
Full Text
Peer Reviewed
See detailUnderstanding Android App Piggybacking
Li, Li UL; Li, Daoyuan UL; Bissyande, Tegawendé François D Assise UL et al

Poster (2017, May)

The Android packaging model offers adequate opportunities for attackers to inject malicious code into popular benign apps, attempting to develop new malicious apps that can then be easily spread to a ... [more ▼]

The Android packaging model offers adequate opportunities for attackers to inject malicious code into popular benign apps, attempting to develop new malicious apps that can then be easily spread to a large user base. Despite the fact that the literature has already presented a number of tools to detect piggybacked apps, there is still lacking a comprehensive investigation on the piggybacking processes. To fill this gap, in this work, we collect a large set of benign/piggybacked app pairs that can be taken as benchmark apps for further investigation. We manually look into these benchmark pairs for understanding the characteristics of piggybacking apps and eventually we report 20 interesting findings. We expect these findings to initiate new research directions such as practical and scalable piggybacked app detection, explainable malware detection, and malicious code location. [less ▲]

Detailed reference viewed: 94 (7 UL)
Full Text
Peer Reviewed
See detailAutomatically Locating Malicious Packages in Piggybacked Android Apps
Li, Li UL; Li, Daoyuan UL; Bissyande, Tegawendé François D Assise UL et al

in Abstract book of the 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems (MobileSoft 2017) (2017, May)

To devise efficient approaches and tools for detecting malicious packages in the Android ecosystem, researchers are increasingly required to have a deep understanding of malware. There is thus a need to ... [more ▼]

To devise efficient approaches and tools for detecting malicious packages in the Android ecosystem, researchers are increasingly required to have a deep understanding of malware. There is thus a need to provide a framework for dissecting malware and locating malicious program fragments within app code in order to build a comprehensive dataset of malicious samples. Towards addressing this need, we propose in this work a tool-based approach called HookRanker, which provides ranked lists of potentially malicious packages based on the way malware behaviour code is triggered. With experiments on a ground truth set of piggybacked apps, we are able to automatically locate the malicious packages from piggybacked Android apps with an accuracy of 83.6% in verifying the top five reported items. [less ▲]

Detailed reference viewed: 148 (17 UL)
Full Text
Peer Reviewed
See detailSensing by Proxy in Buildings with Agglomerative Clustering of Indoor Temperature Movements
Li, Daoyuan UL; Bissyande, Tegawendé François D Assise UL; Klein, Jacques UL et al

in The 32nd ACM Symposium on Applied Computing (SAC 2017) (2017, April)

As the concept of Internet of Things (IoT) develops, buildings are equipped with increasingly heterogeneous sensors to track building status as well as occupant activities. As users become more and more ... [more ▼]

As the concept of Internet of Things (IoT) develops, buildings are equipped with increasingly heterogeneous sensors to track building status as well as occupant activities. As users become more and more concerned with their privacy in buildings, explicit sensing techniques can lead to uncomfortableness and resistance from occupants. In this paper, we adapt a sensing by proxy paradigm that monitors building status and coarse occupant activities through agglomerative clustering of indoor temperature movements. Through extensive experimentation on 86 classrooms, offices and labs in a five-story school building in western Europe, we prove that indoor temperature movements can be leveraged to infer latent information about indoor environments, especially about rooms' relative physical locations and rough type of occupant activities. Our results evidence a cost-effective approach to extending commercial building control systems and gaining extra relevant intelligence from such systems. [less ▲]

Detailed reference viewed: 75 (14 UL)
Full Text
Peer Reviewed
See detailWeaving Rules into Models@run.time for Embedded Smart Systems
Mouline, Ludovic UL; Hartmann, Thomas UL; Fouquet, François UL et al

in Mouline, Ludovic; Hartmann, Thomas; Fouquet, François (Eds.) et al Weaving Rules into Models@run.time for Embedded Smart Systems (2017, April)

Smart systems are characterised by their ability to analyse measured data in live and to react to changes according to expert rules. Therefore, such systems exploit appropriate data models together with ... [more ▼]

Smart systems are characterised by their ability to analyse measured data in live and to react to changes according to expert rules. Therefore, such systems exploit appropriate data models together with actions, triggered by domain-related conditions. The challenge at hand is that smart systems usually need to process thousands of updates to detect which rules need to be triggered, often even on restricted hardware like a Raspberry Pi. Despite various approaches have been investigated to efficiently check conditions on data models, they either assume to fit into main memory or rely on high latency persistence storage systems that severely damage the reactivity of smart systems. To tackle this challenge, we propose a novel composition process, which weaves executable rules into a data model with lazy loading abilities. We quantitatively show, on a smart building case study, that our approach can handle, at low latency, big sets of rules on top of large-scale data models on restricted hardware. [less ▲]

Detailed reference viewed: 38 (12 UL)
Full Text
Peer Reviewed
See detailDetecting Trivial Mutant Equivalences via Compiler Optimisations
Kintis, Marinos UL; Papadakis, Mike UL; Jia, Yue et al

in IEEE Transactions on Software Engineering (2017)

Detailed reference viewed: 24 (2 UL)
Full Text
Peer Reviewed
See detailUnderstanding Android App Piggybacking: A Systematic Study of Malicious Code Grafting
Li, Li UL; Li, Daoyuan UL; Bissyande, Tegawendé François D Assise UL et al

in IEEE Transactions on Information Forensics & Security (2017)

The Android packaging model offers ample opportunities for malware writers to piggyback malicious code in popular apps, which can then be easily spread to a large user base. Although recent research has ... [more ▼]

The Android packaging model offers ample opportunities for malware writers to piggyback malicious code in popular apps, which can then be easily spread to a large user base. Although recent research has produced approaches and tools to identify piggybacked apps, the literature lacks a comprehensive investigation into such phenomenon. We fill this gap by 1) systematically building a large set of piggybacked and benign apps pairs, which we release to the community, 2) empirically studying the characteristics of malicious piggybacked apps in comparison with their benign counterparts, and 3) providing insights on piggybacking processes. Among several findings providing insights, analysis techniques should build upon to improve the overall detection and classification accuracy of piggybacked apps, we show that piggybacking operations not only concern app code but also extensively manipulates app resource files, largely contradicting common beliefs. We also find that piggybacking is done with little sophistication, in many cases automatically, and often via library code. [less ▲]

Detailed reference viewed: 144 (18 UL)
Full Text
See detailAugmenting and Structuring User Queries to Support Efficient Free-Form Code Search
Sirres, Raphael; Bissyande, Tegawendé François D Assise UL; Kim, Dongsun UL et al

Report (2017)

Source code terms such as method names and variable types are often different from conceptual words mentioned in a search query. This vocabulary mismatch problem can make code search inefficient. In this ... [more ▼]

Source code terms such as method names and variable types are often different from conceptual words mentioned in a search query. This vocabulary mismatch problem can make code search inefficient. In this paper, we present Code voCABUlary (CoCaBu), an approach to resolving the vocabulary mismatch problem when dealing with free-form code search queries. Our approach leverages common developer questions and the associated expert answers to augment user queries with the relevant, but missing, structural code entities in order to improve the performance of matching relevant code examples within large code repositories. To instantiate this approach, we build GitSearch, a code search engine, on top of GitHub and StackOverflow Q\&A data. We evaluate GitSearch in several dimensions to demonstrate that (1) its code search results are correct with respect to user-accepted answers; (2) the results are qualitatively better than those of existing Internet-scale code search engines; (3) our engine is competitive against web search engines, such as Google, in helping users complete solve programming tasks; and (4) GitSearch provides code examples that are acceptable or interesting to the community as answers for StackOverflow questions. [less ▲]

Detailed reference viewed: 84 (17 UL)
Full Text
Peer Reviewed
See detailAssessing and Improving the Mutation Testing Practice of PIT
Laurent, Thomas; Papadakis, Mike UL; Kintis, Marinos UL et al

in 10th IEEE International Conference on Software Testing, Verification and Validation (2017)

Detailed reference viewed: 37 (2 UL)