Results 101-120 of 217.
Bookmark and Share    
Full Text
Peer Reviewed
See detailIntegrated omics for the identification of key functionalities in biological wastewater treatment microbial communities
Narayanasamy, Shaman UL; Muller, Emilie UL; Sheik, Abdul UL et al

in Microbial Biotechnology (2015)

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated ... [more ▼]

Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single ‘omes’. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure–function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. [less ▲]

Detailed reference viewed: 375 (23 UL)
Full Text
Peer Reviewed
See detailThe extracellular RNA complement of Escherichia coli
Ghosal, Anubrata UL; Upadhyaya, Bimal Babu UL; Fritz, Joëlle UL et al

in MicrobiologyOpen (2015)

he secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but ... [more ▼]

he secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacte- ria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA comple- ment. Our results demonstrate that a large part of the extracellular RNA com- plement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV- free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA- fimL and ves-spy intergenic regions. Our study provides the first detailed char- acterization of the extracellular RNA complement of the enteric model bacte- rium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. [less ▲]

Detailed reference viewed: 186 (12 UL)
Full Text
Peer Reviewed
See detailVizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data
Laczny, Cedric Christian UL; Sternal, Tomasz; Plugaru, Valentin UL et al

in Microbiome (2015)

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent ... [more ▼]

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent approaches, which exploit for example inherent genomic signatures for the clustering of metagenomic fragments (binning), offer the prospect to resolve and reconstruct population-level genomic complements without the need for prior knowledge. Results We present VizBin, a Java™-based application which offers efficient and intuitive reference-independent visualization of metagenomic datasets from single samples for subsequent human-in-the-loop inspection and binning. The method is based on nonlinear dimension reduction of genomic signatures and exploits the superior pattern recognition capabilities of the human eye-brain system for cluster identification and delineation. We demonstrate the general applicability of VizBin for the analysis of metagenomic sequence data by presenting results from two cellulolytic microbial communities and one human-borne microbial consortium. The superior performance of our application compared to other analogous metagenomic visualization and binning methods is also presented. Conclusions VizBin can be applied de novo for the visualization and subsequent binning of metagenomic datasets from single samples, and it can be used for the post hoc inspection and refinement of automatically generated bins. Due to its computational efficiency, it can be run on common desktop machines and enables the analysis of complex metagenomic datasets in a matter of minutes. The software implementation is available at https://claczny.github.io/VizBin under the BSD License (four-clause) and runs under Microsoft Windows™, Apple Mac OS X™ (10.7 to 10.10), and Linux. [less ▲]

Detailed reference viewed: 289 (28 UL)
Full Text
Peer Reviewed
See detailA decade of metaproteomics: where we stand and what the future holds
Wilmes, Paul UL; Heintz-Buschart, Anna UL; Bond, Philip

in Proteomics (2015)

We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high-resolution “meta-omics”. Metaproteomics offers the ... [more ▼]

We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high-resolution “meta-omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here we highlight several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution. [less ▲]

Detailed reference viewed: 116 (1 UL)
Full Text
Peer Reviewed
See detailPhenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires
Bauer, Eugen UL; Laczny, Cedric Christian UL; Magnusdottir, Stefania UL et al

in Microbiome (2015), 3(55), 1-13

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to ... [more ▼]

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to unravel metabolic roles of microbes by linking genotypic and phenotypic characteristics. This connection, however, still remains poorly understood with respect to its evolutionary and ecological context. Results: We generated automatically refined draft genome-scale metabolic models of 301 representative intestinal microbes in silico. We applied a combination of unsupervised machine-learning and systems biology techniques to study individual and global differences in genomic content and inferred metabolic capabilities. Based on the global metabolic differences, we found that energy metabolism and membrane synthesis play important roles in delineating different taxonomic groups. Furthermore, we found an exponential relationship between phylogeny and the reaction composition, meaning that closely related microbes of the same genus can exhibit pronounced differences with respect to their metabolic capabilities while at the family level only marginal metabolic differences can be observed. This finding was further substantiated by the metabolic divergence within different genera. In particular, we could distinguish three sub-type clusters based on membrane and energy metabolism within the Lactobacilli as well as two clusters within the Bifidobacteria and Bacteroides. Conclusions: We demonstrate that phenotypic differentiation within closely related species could be explained by their metabolic repertoire rather than their phylogenetic relationships. These results have important implications in our understanding of the ecological and evolutionary complexity of the human gastrointestinal microbiome. [less ▲]

Detailed reference viewed: 203 (14 UL)
Full Text
Peer Reviewed
See detailIn situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella
Sheik, Abdul UL; Muller, Emilie UL; Audinot, Jean-Nicolas et al

in ISME Journal (The) (2015)

Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium ... [more ▼]

Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium Candidatus Microthrix parvicella (Ca. M. parvicella) has been found to fine-tune its gene expression for optimized substrate assimilation. Here we investigated in situ substrate assimilation by single cells of Ca. M. parvicella using nano-scale secondary-ion mass spectrometry (nanoSIMS). NanoSIMS imaging highlighted phenotypic heterogeneity among Ca. M. parvicella cells of the same filament, whereby 13C-oleic acid and 13C-glycerol-3-phosphate assimilation occurred in ≈21–55% of cells, despite non-assimilating cells being intact and alive. In response to alternating aerobic–anoxic regimes, 13C-oleic acid assimilation occurred among subpopulations of Ca. M. parvicella cells (≈3–28% of cells). Furthermore, Ca. M. parvicella cells exhibited two temperature optima for 13C-oleic acid assimilation and associated growth rates. These results suggest that phenotypic heterogeneity among Ca. M. parvicella cells allows the population to adapt rapidly to fluctuating environmental conditions facilitating its widespread occurrence in biological wastewater treatment plants. [less ▲]

Detailed reference viewed: 152 (16 UL)
Full Text
Peer Reviewed
See detailMethod optimization for fecal sample collection and fecal DNA extraction.
Mathay, Conny; Hamot, Gael; Henry, Estelle et al

in Biopreservation and biobanking (2015), 13(2), 79-93

BACKGROUND: This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here ... [more ▼]

BACKGROUND: This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here optimization of a stool processing protocol validated for fitness-for-purpose in terms of downstream DNA-based analyses. METHODS: Stool collection was initially optimized in terms of sample input quantity and supernatant volume using canine stool. Three DNA extraction methods (PerkinElmer MSM I(R), Norgen Biotek All-In-One(R), MoBio PowerMag(R)) and six collection container types were evaluated with human stool in terms of DNA quantity and quality, DNA yield, and its reproducibility by spectrophotometry, spectrofluorometry, and quantitative PCR, DNA purity, SPUD assay, and 16S rRNA gene sequence-based taxonomic signatures. RESULTS: The optimal MSM I protocol involves a 0.2 g stool sample and 1000 muL supernatant. The MSM I extraction was superior in terms of DNA quantity and quality when compared to the other two methods tested. Optimal results were obtained with plain Sarstedt tubes (without stabilizer, requiring immediate freezing and storage at -20 degrees C or -80 degrees C) and Genotek tubes (with stabilizer and RT storage) in terms of DNA yields (total, human, bacterial, and double-stranded) according to spectrophotometry and spectrofluorometry, with low yield variability and good DNA purity. No inhibitors were identified at 25 ng/muL. The protocol was reproducible in terms of DNA yield among different stool aliquots. CONCLUSIONS: We validated a stool collection method suitable for downstream DNA metagenomic analysis. DNA extraction with the MSM I method using Genotek tubes was considered optimal, with simple logistics in terms of collection and shipment and offers the possibility of automation. Laboratories and biobanks should ensure protocol conditions are systematically recorded in the scope of accreditation. [less ▲]

Detailed reference viewed: 167 (6 UL)
Full Text
Peer Reviewed
See detailComparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks
Roume, Hugo UL; Buschart, Anna UL; Muller, Emilie UL et al

in Biofilms and Microbiomes (2015), 1(15007),

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships ... [more ▼]

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT. METHODS: A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs) sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy, transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and network topological features, respectively. RESULTS: Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism, particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as ‘keystone genes’ as they are likely to be encoded by keystone species. CONCLUSION: The linking of key functionalities to community members through integrated omics opens up exciting possibilities for devising prediction and control strategies for microbial communities in the future. [less ▲]

Detailed reference viewed: 328 (27 UL)
Full Text
Peer Reviewed
See detailSystems Biology of Acidophile Biofilms for Efficient Metal Extraction
Christel, Stephan; Dopson, Mark; Vera, Mario et al

in Advanced Materials Research (2015), 1130

This European Union ERASysApp funded study will investigate one of the major drawbacks of bioleaching of the copper containing mineral chalcopyrite, namely the long lag phase between construction and ... [more ▼]

This European Union ERASysApp funded study will investigate one of the major drawbacks of bioleaching of the copper containing mineral chalcopyrite, namely the long lag phase between construction and inoculation of bioleaching heaps and the release of dissolved metals. In practice, this lag phase can be up to three years and the long time period adds to the operating expenses of bioheaps for chalcopyrite dissolution. One of the major time determining factors in bioleaching heaps is suggested to be the speed of mineral colonization by the acidophilic microorganisms present. By applying confocal microscopy, metatranscriptomics, metaproteomics, bioinformatics, and computer modeling the authors aim to investigate the processes leading up to, and influencing the attachment of three moderately thermophilic sulfur-and/or iron-oxidizing model species: Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. Stirred tank reactors containing chalcopyrite concentrate will be inoculated with these species in various orders and proportions and the effects on the lag phase and rates of metal release will be compared. Meanwhile, confocal microscopy studies of cell attachment to chalcopyrite mineral particles, as well as metatranscriptomics and metaproteomics of the formed biofilms will further increase understanding of the attachment process and help develop a model thereof. By fulfilling our goal to decrease the length of the lag phase of chalcopyrite bioleaching heaps we hope to increase their economic feasibility and therefore, industrial interest in bioleaching as a sustainable technology. [less ▲]

Detailed reference viewed: 37 (3 UL)
See detailFrom integrated omics towards Eco-Systems Biology
Wilmes, Paul UL

Presentation (2014, November)

Detailed reference viewed: 1 (0 UL)
See detailEcosystems Biology: from data to control of microbial communities
Wilmes, Paul UL

Presentation (2014, November)

Detailed reference viewed: 1 (0 UL)
Full Text
Peer Reviewed
See detailCommunity-integrated omics links dominance of a microbial generalist to fine-tuned resource usage
Muller, Emilie UL; Pinel, Nicolas; Laczny, Cedric Christian UL et al

in Nature Communications (2014)

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle ... [more ▼]

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ. [less ▲]

Detailed reference viewed: 290 (31 UL)
Peer Reviewed
See detailHuMiX: A MICROFLUIDICS-BASED IN VITRO CO-CULTURE DEVICE FOR INVESTIGATING HOST-MICROBE INTERACTIONS
Wilmes, Paul UL; estes, matt; zenhausern, frederic et al

Scientific Conference (2014, October 30)

Detailed reference viewed: 303 (23 UL)
See detailIn situ single-cell investigations of substrate utilisation by Candidatus Microthrix parvicella
Sheik, Abdul UL; Muller, Emilie UL; Audinot, Jean-Nicolas et al

Poster (2014, October 16)

Detailed reference viewed: 130 (21 UL)
See detailEco-Systems Biology: from integrated omics to control strategies for mixed microbial communities
Wilmes, Paul UL

Scientific Conference (2014, October)

Detailed reference viewed: 1 (0 UL)