Results 21-40 of 426.
Bookmark and Share    
Full Text
See detailUncertainty Quantification in Finite Element Models:Application to SoftTissue Biomechanics
Hauseux, Paul UL; Hale, Jack UL; Bulle, Raphaël UL et al

Scientific Conference (2018, July 23)

We present probabilistic approaches aiming at the selection of the best constitutive model and to identify their parameters from experimental data. These parameters are always associated with some degree ... [more ▼]

We present probabilistic approaches aiming at the selection of the best constitutive model and to identify their parameters from experimental data. These parameters are always associated with some degree of uncertainty. It is therefore important to study how this statistical uncertainty in parameters propagates to a safety-critical quantity of interest in the output of a model. Efficient Monte Carlo methods based on variance reduction techniques (Sensitivity Derivatives Monte Carlo methods [Hauseux et al. 2017] and MultiLevel Monte Carlo [Giles 2015] methods) are employed to propagate this uncertainty for both random variables and random fields. Inverse and forward problems are strongly connected. In a bayesian setting [Matthies et al. 2017], developing methods that reduce the number of evaluations of the forward model to an absolute minimum to achieve convergence is crucial for tractable computations. Numerical results in the context of soft tissue biomechanics are presented and discussed. [less ▲]

Detailed reference viewed: 144 (4 UL)
Full Text
See detailFree boundary problems: numerical methods and data-driven simulations
Bordas, Stéphane UL

Presentation (2018, March 05)

Detailed reference viewed: 111 (8 UL)
Full Text
See detailData-driven modelling and simulation: fracture and medical simulations
Bordas, Stéphane UL

Presentation (2018, February 08)

Predicting failure in aircraft structures – simulating fracture across scales and times You could fly every day of your life in a commercial aircraft for twenty thousand years without suffering a fatal ... [more ▼]

Predicting failure in aircraft structures – simulating fracture across scales and times You could fly every day of your life in a commercial aircraft for twenty thousand years without suffering a fatal accident. This extraordinary level of safety is the product of decades of engineering and materials science research. Simultaneously, engineers have strived to produce lighter and stronger aircraft, with increased range and metals have thus been gradually replaced by lighter advanced composite materials which take up more than half of the structural weight of today's most advanced aircraft. Such progress has been largely enabled by modeling and simulation of materials and structures, which have revolutionized design by enabling engineers to investigate virtually various design strategies. This presentation will focus on the challenges which have been posed, are posed, and will be posed to such modeling and simulation tools in the strive to predict the durability of lighter, stronger, longer-ranging and more reliable aircraft. [less ▲]

Detailed reference viewed: 188 (2 UL)
Full Text
Peer Reviewed
See detailMultiple crack detection in 3D using a stable XFEM and global optimization
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane UL

in Computational Mechanics (2018)

A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid ... [more ▼]

A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity. [less ▲]

Detailed reference viewed: 124 (7 UL)
Full Text
Peer Reviewed
See detailOn the effect of grains interface parameters on the macroscopic properties of polycrystalline materials
Akbari, Ahmad; Kerfriden, Pierre; Bordas, Stéphane UL

in Computers & Structures (2018), 196

In this paper, the influence of microscopic parameters on the macroscopic behaviour of polycrystalline materials under different loading configuration is investigated. Linear elastic grains with zero ... [more ▼]

In this paper, the influence of microscopic parameters on the macroscopic behaviour of polycrystalline materials under different loading configuration is investigated. Linear elastic grains with zero thickness cohesive interfaces are considered at the microscale with in depth introduction of effective parameters. A multiscale method based on homogenisation technique is employed to bridge the scales. In order to minimize the homogenisation error, a representative volume element (RVE) of the microscopic structure is statistically determined to be used in the numerical analysis. For each loading condition of the RVE, several numerical examinations are conducted to illustrate the relationship between the microscopic parameters. Finally, the effects of microscopic critical fracture energies, maximum tensile and shear strengths of grain interfaces on the mechanical properties, i.e. stress-strain curve and yield surface at the macroscale are discussed in details. It is shown that macroscopic yield surface and stress strain curves can be used to characterise the microscopic properties. [less ▲]

Detailed reference viewed: 92 (2 UL)
Full Text
See detailUsing higher-order adjoints to accelerate the solution of UQ problems with random fields
Hale, Jack UL; Hauseux, Paul UL; Bordas, Stéphane UL

Poster (2018, January 08)

A powerful Monte Carlo variance reduction technique introduced in Cao and Zhang 2004 uses local derivatives to accelerate Monte Carlo estimation. This work aims to: develop a new derivative-driven ... [more ▼]

A powerful Monte Carlo variance reduction technique introduced in Cao and Zhang 2004 uses local derivatives to accelerate Monte Carlo estimation. This work aims to: develop a new derivative-driven estimator that works for SPDEs with uncertain data modelled as Gaussian random fields with Matérn covariance functions (infinite/high-dimensional problems) (Lindgren, Rue, and Lindström, 2011), use second-order derivative (Hessian) information for improved variance reduction over our approach in (Hauseux, Hale, and Bordas, 2017), demonstrate a software framework using FEniCS (Logg and Wells, 2010), dolfin-adjoint (Farrell et al., 2013) and PETSc (Balay et al., 2016) for automatic acceleration of MC estimation for a wide variety of PDEs on HPC architectures. [less ▲]

Detailed reference viewed: 154 (23 UL)
Full Text
Peer Reviewed
See detailQuantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters
Hauseux, Paul UL; Hale, Jack UL; Cotin, Stéphane et al

in Applied Mathematical Modelling (2018), 62

We present a simple open-source semi-intrusive computational method to propagate uncertainties through hyperelastic models of soft tissues. The proposed method is up to two orders of magnitude faster than ... [more ▼]

We present a simple open-source semi-intrusive computational method to propagate uncertainties through hyperelastic models of soft tissues. The proposed method is up to two orders of magnitude faster than the standard Monte Carlo method. The material model of interest can be altered by adjusting few lines of (FEniCS) code. The method is able to (1) provide the user with statistical confidence intervals on quantities of practical interest, such as the displacement of a tumour or target site in an organ; (2) quantify the sensitivity of the response of the organ to the associated parameters of the material model. We exercise the approach on the determination of a confidence interval on the motion of a target in the brain. We also show that for the boundary conditions under consideration five parameters of the Ogden-Holzapfel-like model have negligible influence on the displacement of the target zone compared to the three most influential parameters. The benchmark problems and all associated data are made available as supplementary material. [less ▲]

Detailed reference viewed: 728 (119 UL)
Full Text
Peer Reviewed
See detailWeakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximaTion (GIFT)
Atroshchenko, Elena; Tomar, Satyendra UL; Xu, Gang et al

in International Journal for Numerical Methods in Engineering (2018)

This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution ... [more ▼]

This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution field. The method inherits the main advantage of isogeometric analysis, i.e. preserves the original, exact CAD geometry (for example, given by NURBS), but allows pairing it with an approximation space which is more suitable/flexible for analysis, for example, T-splines, LR-splines, (truncated) hierarchical B-splines, and PHT-splines. This generalization offers the advantage of adaptive local refinement without the need to re-parameterize the domain, and therefore without weakening the link with the CAD model. We demonstrate the use of the method with different choices of the geometry and field splines, and show that, despite the failure of the standard patch test, the optimum convergence rate is achieved for non-nested spaces. [less ▲]

Detailed reference viewed: 161 (8 UL)
Full Text
Peer Reviewed
See detailDeep neural network with high-order neuron for the prediction of foamed concrete strength
Nguyen, Tuan; Kashani, Alireza; Ngo, Tuan et al

in Computer-Aided Civil and Infrastructure Engineering (2018)

The article presents a deep neural network model for the prediction of the compressive strength of foamed concrete. A new, high-order neuron was developed for the deep neural network model to improve the ... [more ▼]

The article presents a deep neural network model for the prediction of the compressive strength of foamed concrete. A new, high-order neuron was developed for the deep neural network model to improve the performance of the model. Moreover, the cross-entropy cost function and rectified linear unit activation function were employed to enhance the performance of the model. The present model was then applied to predict the compressive strength of foamed concrete through a given data set, and the obtained results were compared with other machine learning methods including conventional artificial neural network (C-ANN) and second-order artificial neural network (SO-ANN). To further validate the proposed model, a new data set from the laboratory and a given data set of high-performance concrete were used to obtain a higher degree of confidence in the prediction. It is shown that the proposed model obtained a better prediction, compared to other methods. In contrast to C-ANN and SO-ANN, the proposed model can genuinely improve its performance when training a deep neural network model with multiple hidden layers. A sensitivity analysis was conducted to investigate the effects of the input variables on the compressive strength. The results indicated that the compressive strength of foamed concrete is greatly affected by density, followed by the water-to-cement and sand-to-cement ratios. By providing a reliable prediction tool, the proposed model can aid researchers and engineers in mixture design optimization of foamed concrete. [less ▲]

Detailed reference viewed: 77 (4 UL)
Full Text
Peer Reviewed
See detailA parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials
Bansal, Manik; Singh, I.V.; Mishra, B.K. et al

in Computer Methods in Applied Mechanics and Engineering (2018)

We propose a parallel and computationally efficient multi-split XFEM approach for 3-D analysis of heterogeneous materials. In this approach, multiple discontinuities (pores and reinforcement particles ... [more ▼]

We propose a parallel and computationally efficient multi-split XFEM approach for 3-D analysis of heterogeneous materials. In this approach, multiple discontinuities (pores and reinforcement particles) may intersect any given element (we call those elements multi-split elements). These discontinuities are modeled by imposing additional degrees of freedom at the nodes. The main advantage of the proposed scheme is that the mesh size remains independent of the relative distance among the heterogeneities/discontinuities. The pores and reinforcement particles are assumed to be spherical. The simulations are performed for uniform and non-uniform heterogeneity distribution. The Young’s modulus of the heterogeneous material is evaluated for different amount of pores and reinforcement particles. To demonstrate the computational efficiency of the multi-split XFEM, elastic damage analysis is performed for the unit cell with 5% pores and 5% reinforcement particles under uniaxial tensile loading. These simulations show that the Young’s modulus decreases linearly with the increase in the volume fraction of the pores and increases linearly with the increase in volume fraction of reinforcement particles. The multi-split XFEM is found to be at least 1.8 times computationally efficient than standard XFEM and at least 6.7 times computationally efficient than FEM. [less ▲]

Detailed reference viewed: 67 (2 UL)
Full Text
Peer Reviewed
See detailSkew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact
Hu, Qingyuan; Chouly, Franz; Hu, Ping et al

in Computer Methods in Applied Mechanics and Engineering (2018), 341

A simple skew-symmetric Nitsche’s formulation is introduced into the framework of isogeometric analysis (IGA) to deal with various problems in small strain elasticity: essential boundary conditions ... [more ▼]

A simple skew-symmetric Nitsche’s formulation is introduced into the framework of isogeometric analysis (IGA) to deal with various problems in small strain elasticity: essential boundary conditions, symmetry conditions for Kirchhoff plates, patch coupling in statics and in modal analysis as well as Signorini contact conditions. For linear boundary or interface conditions, the skew-symmetric formulation is parameter-free. For contact conditions, it remains stable and accurate for a wide range of the stabilization parameter. Several numerical tests are performed to illustrate its accuracy, stability and convergence performance. We investigate particularly the effects introduced by Nitsche’s coupling, including the convergence performance and condition numbers in statics as well as the extra “outlier” frequencies and corresponding eigenmodes in structural dynamics. We present the Hertz test, the block test, and a 3D self-contact example showing that the skew-symmetric Nitsche’s formulation is a suitable approach to simulate contact problems in IGA. [less ▲]

Detailed reference viewed: 79 (1 UL)
Full Text
Peer Reviewed
See detail3D meso-scale modelling of foamed concrete based on X-ray Computed Tomography
Nguyen, Tuan; Ghazlan, Abdallah; Kashani, Alireza et al

in Construction and Building Materials (2018), 188

Foamed concrete has been widely used in infrastructure construction and poses new challenges to design and modelling. This paper investigates the behaviour of foamed concrete with the help of X-ray ... [more ▼]

Foamed concrete has been widely used in infrastructure construction and poses new challenges to design and modelling. This paper investigates the behaviour of foamed concrete with the help of X-ray Computed Tomography (XCT), which is capable of characterising the microstructure of foamed concrete. An in situ compressive test-XCT scan is carried out to observe the failure mechanism of foamed concrete by XCT when subjected to compression load. A meso-scale simulation based on XCT images is conducted to simulate the behaviour of foamed concrete. An algorithm that directly reconstructs the meso-scale model from XCT images is developed. The experimental and numerical results show that foamed concrete exhibits a significant change in mechanical behaviour; it is less brittle compared to the response of dense samples. However, the reduction in the level of brittleness is accompanied by a significant decrease in compressive strength. Failure development inside samples is successfully captured by the XCT scan and the meso-scale modelling. The topology of foamed structures, in particular the chain of interconnected pores, influences the failure mechanism of foamed concrete. The combination of XCT scan and meso-scale modelling provides a comprehensive framework to understand the mechanical behaviour of foamed concrete. [less ▲]

Detailed reference viewed: 56 (2 UL)
Full Text
Peer Reviewed
See detailAdaptive Isogeometric analysis for plate vibrations: An efficient approach of local refinement based on hierarchical a posteriori error estimation
Yu, Peng; Anitescu, Cosmin; Tomar, Satyendra UL et al

in Computer Methods in Applied Mechanics and Engineering (2018), 342

This paper presents a novel methodology of local adaptivity for the frequency-domain analysis of the vibrations of Reissner–Mindlin plates. The adaptive discretization is based on the recently developed ... [more ▼]

This paper presents a novel methodology of local adaptivity for the frequency-domain analysis of the vibrations of Reissner–Mindlin plates. The adaptive discretization is based on the recently developed Geometry Independent Field approximaTion (GIFT) framework, which may be seen as a generalization of the Iso-Geometric Analysis (IGA).Within the GIFT framework, we describe the geometry of the structure exactly with NURBS (Non-Uniform Rational B-Splines), whilst independently employing Polynomial splines over Hierarchical T-meshes (PHT)-splines to represent the solution field. The proposed strategy of local adaptivity, wherein a posteriori error estimators are computed based on inexpensive hierarchical h-refinement, aims to control the discretization error within a frequency band. The approach sweeps from lower to higher frequencies, refining the mesh appropriately so that each of the free vibration mode within the targeted frequency band is sufficiently resolved. Through several numerical examples, we show that the GIFT framework is a powerful and versatile tool to perform local adaptivity in structural dynamics. We also show that the proposed adaptive local h-refinement scheme allows us to achieve significantly faster convergence rates than a uniform h-refinement. [less ▲]

Detailed reference viewed: 78 (4 UL)
Full Text
Peer Reviewed
See detailConstructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization
Xu, Gang; Li, Ming; Mourrain, Bernard et al

in Computer Methods in Applied Mechanics & Engineering (2018), 328

In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries. Instead of the computational domain bounded by four B ... [more ▼]

In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries. Instead of the computational domain bounded by four B-spline curves, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B´ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B´ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1/G1-continuity constraints on the interface of neighboring Bezier patches with respect to each quad in the quadrangulation, the high-quality Bezier patch parameterization is obtained by a local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach. [less ▲]

Detailed reference viewed: 73 (6 UL)
Full Text
Peer Reviewed
See detailModelling of inter- and transgranular stress corrosion crack propagation in polycrystalline material by using phase field method
Nguyen, Thanh Tung UL; Réthoré, J.; Bolivar, J. et al

in Journal of the Mechanical Behavior of Materials (2018), 26

Detailed reference viewed: 33 (3 UL)