Reference : Gradient Estimates on Dirichlet and Neumann Eigenfunctions
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/10993/33038
Gradient Estimates on Dirichlet and Neumann Eigenfunctions
English
Arnaudon, Marc [Université de Bordeaux > Institut de Mathématiques de Bordeaux]
Thalmaier, Anton mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit >]
Wang, Feng-Yu [Tianjin University > Center for Applied Mathematics]
In press
International Mathematics Research Notices
Oxford University Press
1-27
Yes (verified by ORBilu)
International
1073-7928
1687-0247
Oxford
United Kingdom
[en] By methods of stochastic analysis on Riemannian manifolds, we derive explicit two-sided gradient estimates for Dirichlet eigenfunctions on a d-dimensional compact Riemannian manifold D with boundary. Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper.
University of Luxembourg - UL
R-AGR-0517 > AGSDE > 01/09/2015 - 31/08/2018 > THALMAIER Anton
Researchers
http://hdl.handle.net/10993/33038
10.1093/imrn/rny208
http://arxiv.org/abs/1710.10832
FnR ; FNR7628746 > Anton Thalmaier > GEOMREV > Geometry Of Random Evolutions > 01/03/2015 > 28/02/2018 > 2014

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
18atw-IRMN-ArXiv.pdfAuthor preprint333.85 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.