Reference : Holonomies for connections with values in L_infty algebras
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/10993/22570
Holonomies for connections with values in L_infty algebras
English
Arias Abad, Camilo [Universidad Nacional de Colombia en Medellín (Colombia) > Escuela de Matemáticas > > Profesor Asistente]
Schatz, Florian mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit >]
2014
Homology, Homotopy & Applications
International Press of Boston
16
1
89-118
Yes (verified by ORBilu)
International
1532-0073
1532-0081
[en] higher holonomies ; rational homotopy theory ; flat superconnections
[en] Given a flat connection on a manifold M with values in a filtered L-infinity-algebra g, we construct a morphism, generalizing the holonomies of flat connections with values in Lie algebras. The construction is based on Gugenheim's A-infinity version of de Rham's theorem, which in turn is based on Chen's iterated integrals. Finally, we discuss examples related to the geometry of configuration spaces of points in Euclidean space Rd, and to generalizations of the holonomy representations of braid groups.
Centre for Quantum Geometry of Moduli Spaces, Aarhus University (Aarhus, Denmark)
Swiss National Science Foundation (SNF-grant 200020-131813/1) ; Humboldt Stiftung (Germany) ; ERC Starting Grant no. 279729 ; Danish National Research Foundation grant DNRF95 (Centre for Quantum Geometry of Moduli Spaces - QGM) ; Utrecht University (Utrecht, The Netherlands)
Researchers
http://hdl.handle.net/10993/22570
10.4310/HHA.2014.v16.n1.a6
http://www.intlpress.com/site/pub/pages/journals/items/hha/content/vols/0016/0001/a006/
The original publication is available at http://www.intlpress.com/site/pub/pages/journals/items/hha/content/vols/0016/0001/a006/

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Linftyarxiv_2.pdfAuthor postprint430.49 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.