Reference : Functional organization of the yeast proteome by systematic analysis of protein complexes.
Scientific journals : Article
Life sciences : Multidisciplinary, general & others
http://hdl.handle.net/10993/22134
Functional organization of the yeast proteome by systematic analysis of protein complexes.
English
Gavin, Anne-Claude [> >]
Bosche, Markus [> >]
Krause, Roland mailto [Cellzome AG]
Grandi, Paola [> >]
Marzioch, Martina [> >]
Bauer, Andreas [> >]
Schultz, Jorg [> >]
Rick, Jens M. [> >]
Michon, Anne-Marie [> >]
Cruciat, Cristina-Maria [> >]
Remor, Marita [> >]
Hofert, Christian [> >]
Schelder, Malgorzata [> >]
Brajenovic, Miro [> >]
Ruffner, Heinz [> >]
Merino, Alejandro [> >]
Klein, Karin [> >]
Hudak, Manuela [> >]
Dickson, David [> >]
Rudi, Tatjana [> >]
Gnau, Volker [> >]
Bauch, Angela [> >]
Bastuck, Sonja [> >]
Huhse, Bettina [> >]
Leutwein, Christina [> >]
Heurtier, Marie-Anne [> >]
Copley, Richard R. [> >]
Edelmann, Angela [> >]
Querfurth, Erich [> >]
Rybin, Vladimir [> >]
Drewes, Gerard [> >]
Raida, Manfred [> >]
Bouwmeester, Tewis [> >]
Bork, Peer [> >]
Seraphin, Bertrand [> >]
Kuster, Bernhard [> >]
Neubauer, Gitte [> >]
Superti-Furga, Giulio [> >]
2002
Nature
415
6868
141-7
Yes (verified by ORBilu)
International
0028-0836
England
[en] Cells, Cultured ; Chromatography, Affinity ; Gene Targeting ; Humans ; Macromolecular Substances ; Proteome/genetics/physiology ; Recombinant Fusion Proteins/chemistry/genetics/isolation & purification ; Saccharomyces cerevisiae/chemistry/genetics/physiology ; Saccharomyces cerevisiae Proteins/genetics/physiology ; Sensitivity and Specificity ; Species Specificity ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
[en] Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
http://hdl.handle.net/10993/22134
10.1038/415141a

There is no file associated with this reference.

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.