Reference : Meshfree volume-averaged nodal projection method for nearly-incompressible elasticity...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
Engineering, computing & technology : Multidisciplinary, general & others
Computational Sciences
http://hdl.handle.net/10993/16725
Meshfree volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions
English
Ortiz-Benardin, Alejandro [University of Chile > Department of Mechanical Engineering]
Hale, Jack mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >]
Cyron, Christian J. [Yale University > Department of Biomedical Engineering]
Mar-2015
Computer Methods in Applied Mechanics & Engineering
Elsevier Science
285
427-451
Yes (verified by ORBilu)
International
0045-7825
Lausanne
Switzerland
[en] meshfree methods ; nearly-incompressible elasticity ; volumetric locking ; projection methods ; volume-averaged pressure/strains ; bubble functions
[en] We present a displacement-based Galerkin meshfree method for the analysis of nearly-incompressible linear elastic solids, where low-order simplicial tessellations (i.e., 3- node triangular or 4-node tetrahedral meshes) are used as a background structure for numerical integration of the weak form integrals and to get the nodal information for the computation of the meshfree basis functions. In this approach, a volume- averaged nodal projection operator is constructed to project the dilatational strain into an approximation space of equal- or lower-order than the approximation space for the displacement field resulting in a locking-free method. The stability of the method is provided via bubble-like basis functions. Because the notion of an ‘ele- ment’ or ‘cell’ is not present in the computation of the meshfree basis functions such low-order tessellations can be used regardless of the order of the approximation spaces desired. First- and second-order meshfree basis functions are chosen as a particular case in the proposed method. Numerical examples are provided in two and three dimensions to demonstrate the robustness of the method, its ability to avoid volumetric locking in the nearly-incompressible regime, and its improved performance when compared to the MINI finite element scheme on the simplicial mesh.
FONDECYT ; Fonds National de la Recherche - FnR
http://hdl.handle.net/10993/16725
10.1016/j.cma.2014.11.018

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
meshfree-vol-nodal-avg-proj-meth-2013-final-lowres.pdfAuthor postprint6.96 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.