Reference : Thermal comfort of a new university building in Luxembourg with passive cooling
Scientific congresses, symposiums and conference proceedings : Paper published in a book
Engineering, computing & technology : Materials science & engineering
http://hdl.handle.net/10993/13730
Thermal comfort of a new university building in Luxembourg with passive cooling
English
Thewes, Andreas mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit]
Maas, Stefan mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >]
Scholzen, Frank mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >]
Zürbes, Arno [> >]
Waldmann, Danièle mailto [University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit >]
2010
Thermal comfort of a new university building in Luxembourg with passive cooling
220-233
Yes
978-960-6746-08-6
Palenc 2010
29.09.2010 - 01.10.2010
Rhodes
Greece
[en] Thermal comfort ; Lighting ; Night ventilation ; Passive cooling
[en] The new Luxembourgish university buildings should comply with a low energy standard, which was defined for typical offices and smaller lecture rooms by a thermal end-energy lower than 14 kWh/m3a and an electricity use for HVAC and lighting of max. 6 kWh/m3a. Consequently it was necessary to find ways to avoid the need for mechanical ventilation and air-conditioning. The heat consumption was minimized by an air-tight and well insulated building envelope. A difficulty was posed by special outside façade elements which were set-up as a grid over the complete outer surface as an architectural element. To prevent the risk of overheating during summer, it is necessary to reduce the solar gains by optimizing the window sizes and the glazing types, as well as through the installation of movable indoor shading elements. Nevertheless enough daylight should enter the rooms to limit the consumption of electricity for artificial lighting. Hence detailed dynamic simulations were performed using TRNSYS and TRNFLOW to ensure thermal comfort without active cooling. The effective electricity consumption of a newly installed state-of-the-art lighting system, including presence detectors and daylight controllers for dimming, was measured in a test installation to determine the internal loads by lighting. Radiation and illuminance measurements were performed on sample elements of the façade grid. The results were used to verify the daylight simulations and to analyze the benefits of daylight controllers. Several iterative steps were taken to gradually improve the building by introducing different modifications, e.g. reduction of the window sizes, installation of a lighting control system, improving the night ventilation and effective use of the thermal inertia of the building.
http://hdl.handle.net/10993/13730
http://palenc2010.conferences.gr
Palenc 2010 - Passive and low energy cooling for the built environment

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Thewes.pdfNo commentaryAuthor postprint1.09 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.