References of "Security and Communication Networks"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEfficient Arithmetic on ARM-NEON and Its Application for High-Speed RSA Implementation
Seo, Hwajeong; Liu, Zhe UL; Groszschädl, Johann UL et al

in Security and Communication Networks (2016), 9(18), 5401-5411

A steadily increasing number of modern processors support Single Instruction Multiple Data (SIMD) instructions to speed up multimedia, communication, and security applications. The computational power of ... [more ▼]

A steadily increasing number of modern processors support Single Instruction Multiple Data (SIMD) instructions to speed up multimedia, communication, and security applications. The computational power of Intel's SSE and AVX extensions as well as ARM's NEON engine has initiated a body of research on SIMD-parallel implementation of multiple-precision integer arithmetic operations, in particular modular multiplication and modular squaring, which are performance-critical components of widely-used public-key cryptosystems such as RSA, DSA, Diffie-Hellman, and their elliptic-curve variants ECDSA and ECDH. In this paper, we introduce the Double Operand Scanning (DOS) method for multiple-precision squaring and describe its implementation for ARM NEON processors. The DOS method uses a full-radix representation of the operand to be squared and aims to maximize performance by reducing the number of Read-After-Write (RAW) dependencies between source and destination registers. We also analyze the benefits of applying Karatsuba's technique to both multiple-precision multiplication and squaring, and present an optimized implementation of Montgomery's algorithm for modular reduction. Our performance evaluation shows that the DOS method along with the other optimizations described in this paper allows one to execute a full 2048-bit modular exponentiation in about 14.25 million clock cycles on an ARM Cortex-A15 processor, which is significantly faster than previously-reported RSA implementations for the ARM-NEON platform. [less ▲]

Detailed reference viewed: 37 (2 UL)
Full Text
Peer Reviewed
See detailSecurity and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer
Kiraz, Mehmet Sabır; Genç, Ziya Alper UL; Kardaş, Süleyman

in Security and Communication Networks (2015), 8(18), 4123-4135

Bringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme ... [more ▼]

Bringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user’s input with at most O(n) complexity instead of O(2n), where n is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly. [less ▲]

Detailed reference viewed: 52 (7 UL)
Full Text
Peer Reviewed
See detailDefending against insider threats and internal data leakage
You, Ilsun; Lenzini, Gabriele UL; Ogiela, Marek R. et al

in SECURITY AND COMMUNICATION NETWORKS (2012), 5(8), 831-833

Detailed reference viewed: 55 (1 UL)