References of "Science signaling"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailContext-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation.
Iwamoto, Nao; D'Alessandro, Lorenza A.; Depner, Sofia et al

in Science signaling (2016), 9(413), 13

The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the ... [more ▼]

The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the MAPK kinase MEK and its targets extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes and the transformed keratinocyte cell line HaCaT A5 exposed to either hepatocyte growth factor or interleukin-6. By combining quantitative mass spectrometry with dynamic modeling, we elucidated network structures for the reversible threonine and tyrosine phosphorylation of ERK in both cell types. In addition to differences in the phosphorylation and dephosphorylation reactions, the HaCaT network model required two feedback mechanisms, which, as the experimental data suggested, involved the induction of the dual-specificity phosphatase DUSP6 and the scaffold paxillin. We assayed and modeled the accumulation of the double-phosphorylated and active form of ERK1/2, as well as the dynamics of the changes in the monophosphorylated forms of ERK1/2. Modeling the differences in the dynamics of the changes in the distributions of the phosphorylated forms of ERK1/2 suggested that different amounts of MEK activity triggered context-specific responses, with primary hepatocytes favoring the formation of double-phosphorylated ERK1/2 and HaCaT A5 cells that produce both the threonine-phosphorylated and the double-phosphorylated form. These differences in phosphorylation distributions explained the threshold, sensitivity, and saturation of the ERK response. We extended the findings of differential ERK phosphorylation profiles to five additional cultured cell systems and matched liver tumor and normal tissue, which revealed context-specific patterns of the various forms of phosphorylated ERK. [less ▲]

Detailed reference viewed: 80 (8 UL)
Full Text
Peer Reviewed
See detailReliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes.
Thurley, Kevin; Tovey, Stephen C.; Moenke, Gregor et al

in Science Signaling (2014), 7(331), 59

Ca(2+) is a ubiquitous intracellular messenger that regulates diverse cellular activities. Extracellular stimuli often evoke sequences of intracellular Ca(2+) spikes, and spike frequency may encode ... [more ▼]

Ca(2+) is a ubiquitous intracellular messenger that regulates diverse cellular activities. Extracellular stimuli often evoke sequences of intracellular Ca(2+) spikes, and spike frequency may encode stimulus intensity. However, the timing of spikes within a cell is random because each interspike interval has a large stochastic component. In human embryonic kidney (HEK) 293 cells and rat primary hepatocytes, we found that the average interspike interval also varied between individual cells. To evaluate how individual cells reliably encoded stimuli when Ca(2+) spikes exhibited such unpredictability, we combined Ca(2+) imaging of single cells with mathematical analyses of the Ca(2+) spikes evoked by receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3). This analysis revealed that signal-to-noise ratios were improved by slow recovery from feedback inhibition of Ca(2+) spiking operating at the whole-cell level and that they were robust against perturbations of the signaling pathway. Despite variability in the frequency of Ca(2+) spikes between cells, steps in stimulus intensity caused the stochastic period of the interspike interval to change by the same factor in all cells. These fold changes reliably encoded changes in stimulus intensity, and they resulted in an exponential dependence of average interspike interval on stimulation strength. We conclude that Ca(2+) spikes enable reliable signaling in a cell population despite randomness and cell-to-cell variability, because global feedback reduces noise, and changes in stimulus intensity are represented by fold changes in the stochastic period of the interspike interval. [less ▲]

Detailed reference viewed: 65 (10 UL)