References of "RNA Biology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRegulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis.
Wessner, Francoise; Lacoux, Caroline; Goeders, Nathalie et al

in RNA biology (2015), 12(10), 1099-1108

We discovered a chromosomal locus containing two toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type ... [more ▼]

We discovered a chromosomal locus containing two toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the two modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs. [less ▲]

Detailed reference viewed: 78 (3 UL)
Full Text
Peer Reviewed
See detailCombinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis
Liivrand, Maria UL; Heinäniemi, Merja UL; John, Elisabeth UL et al

in RNA Biology (2014), 11(1), 76-91

MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward ... [more ▼]

MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted combinatorial target, and its key transcriptional regulator peroxisome proliferator activated receptor gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion on the mRNA and functional level in maturing adipocytes. This regulation is mediated through the Lpl 3′UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic conditions and could be extended to quantitative modeling of regulation of other metabolic genes under similar regulatory network motifs. [less ▲]

Detailed reference viewed: 212 (33 UL)
Full Text
Peer Reviewed
See detailsorting signal targeting mRNA into hepatic extracellular vesicles
del Sol Mesa, Antonio UL

in RNA Biology (2014)

Detailed reference viewed: 111 (7 UL)
Full Text
Peer Reviewed
See detailDynamic regulation of microRNA expression following interferonγ- induced gene transcription
Reinsbach, Susanne UL; Nazarov, Petr V.; Philippidou, Demetra UL et al

in RNA Biology (2012), 9(7), 987-989

MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves ... [more ▼]

MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferonγ (IFNγ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a and miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not. © 2012 Landes Bioscience. [less ▲]

Detailed reference viewed: 72 (16 UL)
Full Text
Peer Reviewed
See detailMiRNAs and neural stem cells: a team to treat Parkinson's disease?
Palm, Thomas; Bahnassawy, Lamia A; Schwamborn, Jens Christian UL

in RNA Biology (2012), 9(6), 720-30

Parkinson's disease (PD) is a common neurodegenerative disorder with no proven neuroprotective or neurorestorative therapies. During disease progression, degeneration of dopaminergic neurons of the ... [more ▼]

Parkinson's disease (PD) is a common neurodegenerative disorder with no proven neuroprotective or neurorestorative therapies. During disease progression, degeneration of dopaminergic neurons of the central nervous system occurs. Therefore, therapies that either aim on the inhibition of this degeneration or on the replacement of the degenerated neurons are needed. On the one hand, arrest of degeneration might be achievable through specific inhibition of disease associated genes like alpha-Synuclein or Leucine rich repeat kinase 2 (LRRK2). On the other hand, based on neural stem cells that bear the ability to generate new dopaminergic neurons, replacement of degenerated cells could be accomplished. Since both approaches can be regulated by micro-RNAs, these molecules have an enormous therapeutic potential. In this review, we will focus on the neurobiological and neurodegenerative implications of miRNAs and highlight their role in stem cell fate decisions. Finally, we will discuss their potential as therapeutic agents and targets for Parkinson's disease. [less ▲]

Detailed reference viewed: 93 (6 UL)