Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Charge pumping in strongly-coupled molecular quantum dots Haughian, Patrick ; ; in Physical Review B (2017), 96(19), 195432 The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck ... [more ▼] The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect in a quantum dot driven by time-periodic gate voltages and tunneling amplitudes using nonequilibrium Green's functions and a Floquet expansion. Building on previous results showing that driving can lift the Franck-Condon blockade, we investigate driving protocols which can be used to pump charge across the quantum dot. In particular, we show that due to the strongly coupled nature of the system, the pump current at resonance is an exponential function of the drive strength. [less ▲] Detailed reference viewed: 34 (1 UL)Charge and energy fractionalization mechanism in one-dimensional channels ; Calzona, Alessio ; Dolcetto, Giacomo et al in Physical Review B (2017), 96 We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to ... [more ▼] We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states. [less ▲] Detailed reference viewed: 70 (6 UL)Quench-induced entanglement and relaxation dynamics in Luttinger liquids Calzona, Alessio ; ; et al in Physical Review B (2017), 96 We investigate the time evolution towards the asymptotic steady state of a one-dimensional interacting system after a quantum quench. We show that at finite times the latter induces entanglement between ... [more ▼] We investigate the time evolution towards the asymptotic steady state of a one-dimensional interacting system after a quantum quench. We show that at finite times the latter induces entanglement between right- and left-moving density excitations, encoded in their cross-correlators, which vanishes in the long-time limit. This behavior results in a universal time decay ∝t−2 of the system spectral properties, in addition to nonuniversal power-law contributions typical of Luttinger liquids. Importantly, we argue that the presence of quench-induced entanglement clearly emerges in transport properties, such as charge and energy currents injected in the system from a biased probe and determines their long-time dynamics. In particular, the energy fractionalization phenomenon turns out to be a promising platform to observe the universal power-law decay ∝t−2 induced by entanglement and represents a novel way to study the corresponding relaxation mechanism. [less ▲] Detailed reference viewed: 33 (3 UL)Ab initio calculation of the G peak intensity of graphene: Laser-energy and Fermi-energy dependence and importance of quantum interference effects Reichardt, Sven ; Wirtz, Ludger in Physical Review B (2017), 95(19), 195422 We present the results of a diagrammatic, fully ab initio calculation of the G peak intensity of graphene. The flexibility and generality of our approach enables us to go beyond the previous analytical ... [more ▼] We present the results of a diagrammatic, fully ab initio calculation of the G peak intensity of graphene. The flexibility and generality of our approach enables us to go beyond the previous analytical calculations in the low-energy regime. We study the laser and Fermi energy dependence of the G peak intensity and analyze the contributions from resonant and nonresonant electronic transitions. In particular, we explicitly demonstrate the importance of quantum interference and nonresonant states for the G peak process. Our method of analysis and computational concept is completely general and can easily be applied to study other materials as well. [less ▲] Detailed reference viewed: 98 (11 UL)Nonequilibrium effects on charge and energy partitioning after an interaction quench Calzona, Alessio ; ; et al in Physical Review B (2017), 95 Charge and energy fractionalization are among the most intriguing features of interacting one-dimensional fermion systems. In this work we determine how these phenomena are modified in the presence of an ... [more ▼] Charge and energy fractionalization are among the most intriguing features of interacting one-dimensional fermion systems. In this work we determine how these phenomena are modified in the presence of an interaction quench. Charge and energy are injected into the system suddenly after the quench, by means of tunneling processes with a noninteracting one-dimensional probe. Here, we demonstrate that the system settles to a steady state in which the charge fractionalization ratio is unaffected by the prequenched parameters. On the contrary, due to the postquench nonequilibrium spectral function, the energy partitioning ratio is strongly modified, reaching values larger than 1. This is a peculiar feature of the nonequilibrium dynamics of the quench process and it is in sharp contrast with the nonquenched case, where the ratio is bounded by 1. [less ▲] Detailed reference viewed: 42 (4 UL)Spin-orbit coupling in quasi-one-dimensional Wigner crystals ; Pedder, Christopher ; Schmidt, Thomas in Physical Review B (2017), 95(4), 045413 We study the effect of Rashba spin-orbit coupling (SOC) on the charge and spin degrees of freedom of a quasi-one-dimensional (quasi-1D) Wigner crystal. As electrons in a quasi-1D Wigner crystal can move ... [more ▼] We study the effect of Rashba spin-orbit coupling (SOC) on the charge and spin degrees of freedom of a quasi-one-dimensional (quasi-1D) Wigner crystal. As electrons in a quasi-1D Wigner crystal can move in the transverse direction, SOC cannot be gauged away in contrast to the pure 1D case. We show that for weak SOC, a partial gap in the spectrum opens at certain ratios between density of electrons and the inverse Rashba length. We present how the low-energy branch of charge degrees of freedom deviates due to SOC from its usual linear dependence at small wave vectors. In the case of strong SOC, we show that spin sector of a Wigner crystal cannot be described by an isotropic antiferromagnetic Heisenberg Hamiltonian any more, and that instead the ground state of neighboring electrons is mostly a triplet state. We present a new spin sector Hamiltonian and discuss the spectrum of Wigner crystal in this limit. [less ▲] Detailed reference viewed: 89 (8 UL)Dynamic response functions and helical gaps in interacting Rashba nanowires with and without magnetic fields Pedder, Christopher ; ; et al in Physical Review B (2016), 94(24), 245414 A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a ``helical gap'' manifests itself in the linear ... [more ▼] A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a ``helical gap'' manifests itself in the linear conductance, as well as in dynamic response functions such as the spectral function, the structure factor, or the tunnelling density of states. In this paper, we investigate theoretically the signature of the helical gap in these observables with a particular focus on the interplay between Rashba spin-orbit coupling and electron-electron interactions. We show that in a quasi-one-dimensional wire, interactions can open a helical gap even without magnetic field. We calculate the dynamic response functions using bosonization, a renormalization group analysis, and the exact form factors of the emerging sine-Gordon model. For special interaction strengths, we verify our results by refermionization. We show how the two types of helical gaps, caused by magnetic fields or interactions, can be distinguished in experiments. [less ▲] Detailed reference viewed: 84 (21 UL)Emission of entangled Kramers pairs from a helical mesoscopic capacitor Dolcetto, Giacomo ; Schmidt, Thomas in Physical Review B (2016), 94(7), 075444 The realization of single-electron sources in integer quantum Hall systems has paved the way for exploring electronic quantum optics experiments in solid-state devices. In this work, we characterize a ... [more ▼] The realization of single-electron sources in integer quantum Hall systems has paved the way for exploring electronic quantum optics experiments in solid-state devices. In this work, we characterize a single Kramers pair emitter realized by a driven antidot embedded in a two-dimensional topological insulator, where spin-momentum locked edge states can be exploited for generating entanglement. Contrary to previous proposals, the antidot is coupled to both edges of a quantum spin Hall bar, thus enabling this mesoscopic capacitor to emit an entangled two-electron state. We study the concurrence $C$ of the emitted state and the efficiency $F$ of its emission as a function of the different spin-preserving and spin-flipping tunnel couplings of the antidot with the edges. We show that the efficiency remains very high ($Fgeq 50) even for maximally entangled states ($C=1$). We also discuss how the entanglement can be probed by means of noise measurements in a simple two-terminal setup. [less ▲] Detailed reference viewed: 67 (7 UL)Effect of Dzyaloshinski-Moriya interaction on elastic small-angle neutron scattering Michels, Andreas ; Mettus, Denis ; et al in Physical Review B (2016), 94 Detailed reference viewed: 59 (3 UL)Transport through a quantum spin Hall antidot as a spectroscopic probe of spin textures Rod, Alexia ; Dolcetto, Giacomo ; et al in Physical Review B (2016), 94 We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial ... [more ▼] We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial spin symmetry. Spin-non-conservation allows additional scattering processes which change the transport properties profoundly. We start from an analytical model for noninteracting transport, which we also compare with a numerical tight-binding simulation. We then extend this model by including Coulomb repulsion on the antidot, and we study the transport in the Coulomb-blockade limit. We investigate sequential tunneling and cotunneling regimes, and we find that the current-voltage characteristic allows a spectroscopic measurement of the edge-state spin textures. [less ▲] Detailed reference viewed: 104 (10 UL)Modeling charge relaxation in graphene quantum dots induced by electron-phonon interaction Reichardt, Sven ; in Physical Review B (2016), 93(24), 245423 Detailed reference viewed: 63 (6 UL)Spin-thermoelectric transport induced by interactions and spin-flip processes in two dimensional topological insulators ; ; Dolcetto, Giacomo et al in Physical Review B (2016), 93(16), 165414 Detailed reference viewed: 41 (8 UL)Density-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces ; ; Tkatchenko, Alexandre in PHYSICAL REVIEW B (2016), 93(3), Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In ... [more ▼] Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In order to tackle this problem, we have developed a method within density-functional theory (DFT) to model screened van der Waals interactions (vdW) for atoms and molecules on surfaces (the so-called DFT+vdW(surf) method). The relatively high accuracy of the DFT+vdW(surf) method in the calculation of both adsorption distances and energies, as well as the high degree of its reliability across a wide range of adsorbates, indicates the importance of the collective electronic effects within the extended substrate for the calculation of the vdW energy tail. We examine in detail the theoretical background of the method and assess its performance for adsorption phenomena including the physisorption of Xe on selected close-packed transition metal surfaces and 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on Au(111). We also address the performance of DFT+vdW(surf) in the case of non-close-packed surfaces by studying the adsorption of Xe on Cu(110) and the interfaces formed by the adsorption of a PTCDA monolayer on the Ag(111), Ag(100), and Ag(110) surfaces. We conclude by discussing outstanding challenges in the modeling of vdW interactions for studying atomic and molecular adsorbates on inorganic substrates. [less ▲] Detailed reference viewed: 123 (1 UL)Non local quantum state engineering with the Cooper pair splitter beyond the Coulomb blockade regime ; ; et al in Physical Review B (2015), 93 A Cooper pair splitter consists of two quantum dots side-coupled to a conventional superconductor. Usually, the quantum dots are assumed to have a large charging energy compared to the superconducting gap ... [more ▼] A Cooper pair splitter consists of two quantum dots side-coupled to a conventional superconductor. Usually, the quantum dots are assumed to have a large charging energy compared to the superconducting gap, in order to suppress processes other than the coherent splitting of Cooper pairs. In this work, in contrast, we investigate the limit in which the charging energy is smaller than the superconducting gap. This allows us, in particular, to study the effect of a Zeeman field comparable to the charging energy. We find analytically that in this parameter regime the superconductor mediates an inter-dot tunneling term with a spin symmetry determined by the Zeeman field. Together with electrostatically tunable quantum dots, we show that this makes it possible to engineer a spin triplet state shared between the quantum dots. Compared to previous works, we thus extend the capabilities of the Cooper pair splitter to create entangled non local electron pairs. [less ▲] Detailed reference viewed: 50 (1 UL)Time-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices ; ; Dolcetto, Giacomo et al in Physical Review B (2015) Detailed reference viewed: 65 (22 UL)Tunneling between helical Majorana modes and helical Luttinger liquids ; Schmidt, Thomas ; in Physical Review B (2015), 91 We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential ... [more ▼] We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential conductance decreases for stronger repulsive interactions and that the point contacts become insulating above a critical interaction strength. For a single-point contact, the differential conductance as a function of bias voltage shows a series of peaks due to Andreev reflection of electrons in the Majorana modes. In the case of two point contacts, interference phenomena make the structure of the individual resonance peaks less universal and show modulations with different separation distance between the contacts. For small separation distance, the overall features remain similar to the case of a single-point contact. [less ▲] Detailed reference viewed: 49 (0 UL)Spin texture of generic helical edge states Rod, Alexia ; Schmidt, Thomas ; in Physical Review B (2015), 91 We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations ... [more ▼] We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations of topological insulators, we show that in all cases the generic behavior of a momentum-dependent rotation of the spin quantization axis is realized. Here we establish this mechanism also for disk geometries with continuous rotational symmetry. Finally, we demonstrate that the rotation of spin-quantization axis remains intact for arbitrary geometries, i.e., in the absence of any continuous symmetry. We also calculate the dependence of this rotation on the model and material parameters. Finally, we propose a spectroscopy measurement which should directly reveal the rotation of the spin-quantization axis of the helical edge states. [less ▲] Detailed reference viewed: 86 (19 UL)Efficiency fluctuations in quantum thermoelectric devices Esposito, Massimiliano ; ; in Physical Review B (2015), 91(11), We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions ... [more ▼] We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions, namely, stochasticity in the junction's performance, quantum effects, and nonequilibrium features preventing a linear response analysis. It is based on a nonequilibrium Green's function (NEGF) approach, which we use to derive the full counting statistics (FCS) for heat and work, and which in turn allows us to calculate the statistical properties of efficiency fluctuations. We simulate the latter for a variety of simple models where our method is exact. By analyzing the discrepancies with the semiclassical prediction of a quantum master equation (QME) approach, we emphasize the quantum nature of efficiency fluctuations for realistic junction parameters. We finally propose an approximate Gaussian method to express efficiency fluctuations in terms of nonequilibrium currents and noises which are experimentally measurable in molecular junctions. [less ▲] Detailed reference viewed: 96 (8 UL)First-principles study of PbTiO3 under uniaxial strains and stresses ; Kreisel, Jens ; in Physical Review B (2014), 90(21), The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical ... [more ▼] The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical constraint applied, the system keeps a purely ferroelectric ground state, with the polarization aligned either along the constraint direction (FEz phase) or along one of the pseudocubic axes perpendicular to it (FEx phase). This contrasts with the cases of isotropic and biaxialmechanical constraints for which novel phases combining ferroelectric and antiferrodistortive motions have been previously reported. Under uniaxial strain, PbTiO3 switched from an FEx ground state under compressive strain to an FEz ground state under tensile strain beyond a critical strain ηc zz ≈ +1%. Under uniaxial stress, PbTiO3 exhibits either an FEx ground state under compression (σzz < 0) or an FEz ground state under tension (σzz > 0). Here, however, an abrupt jump of the structural parameters is also predicted under both compressive and tensile stresses at critical values σzz ≈ +2 and −8 GPa. This behavior appears to be similar to that predicted under negative isotropic pressure and might turn out to be practically useful for enhancing the piezoelectric response in nanodevices. [less ▲] Detailed reference viewed: 62 (1 UL)Single-crystalline BiMnO3 studied by temperature-dependent x-ray diffraction and Raman spectroscopy ; ; et al in Physical Review B (2014), 89(22), We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the ... [more ▼] We report on the temperature dependence of the phonons and crystallographic parameters in BiMnO3 single crystals grown under high pressure and high temperature. The crystallographic structure of the sample was refined from room temperature to liquid helium temperature in the centrosymmetric C2/c space group, i.e., a group which does not allow ferroelectricity. In addition, the lattice dynamics was probed by Raman spectroscopy down to liquid nitrogen temperature, i.e., below the ferromagnetic transition at TC = 100 ± 2 K. Both crystallographic and Raman data indicate the absence of a structural phase transition at the ferromagnetic ordering or any other temperature. The Raman signature around TC shows a significant spin-phonon coupling for the high-frequency bands. [less ▲] Detailed reference viewed: 61 (2 UL) |
||