References of "Langmuir"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMicrofluidic Tensiometry Technique for the Characterization of the Interfacial Tension between Immiscible Liquids.
Honaker, Lawrence William UL; Lagerwall, Jan UL; Jampani, Venkata UL

in Langmuir (2018)

The interfacial tension between two immiscible fluids is of critical importance for understanding many natural phenomena as well as in industrial production processes; however, it can be challenging to ... [more ▼]

The interfacial tension between two immiscible fluids is of critical importance for understanding many natural phenomena as well as in industrial production processes; however, it can be challenging to measure this parameter with high accuracy. Most commonly used techniques have significant shortcomings because of their reliance on other data such as density or viscosity. To overcome these issues, we devise a technique that works with very small sample quantities and does not require any data about either fluid, based on micropipette aspiration techniques. The method facilitates the generation of a droplet of one fluid inside of the other, followed by immediate in situ aspiration of the droplet into a constricted channel. A modified Young-Laplace equation is then used to relate the pressure needed to produce a given deformation of the droplet's radius to the interfacial tension. We demonstrate this technique on different systems with interfacial tensions ranging from sub-millinewton per meter to several hundred millinewton per meter, thus over 4 orders of magnitude, obtaining precise results in agreement with the literature solely from experimental observations of the droplet deformation. [less ▲]

Detailed reference viewed: 144 (6 UL)
Full Text
Peer Reviewed
See detailEnhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents
Bruckner, Johanna; Kuhnhold, Anja UL; Honorato Rios, Camila UL et al

in Langmuir (2016)

Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable ... [more ▼]

Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials. [less ▲]

Detailed reference viewed: 162 (12 UL)
Full Text
Peer Reviewed
See detailRod packing in chiral nematic cellulose nanocrystal dispersions studied by small angle X-ray scattering and laser diffraction
Schütz, Christina; Agthe, Michael; Fall, Andreas et al

in Langmuir (2015), 31(23), 6507-6513

The packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small angle X-ray scattering (SAXS) and laser diffraction. The ... [more ▼]

The packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small angle X-ray scattering (SAXS) and laser diffraction. The average separation distance between the CNCs and the average pitch of the chiral nematic phase have been determined over the entire isotropic-anisotropic biphasic region. The average separation distances range from 51 nm, at the onset of the anisotropic phase formation, to 25 nm above 6 vol% (fully liquid crystalline phase) whereas the average pitch varies from 15.5 μm down to ≈2 μm as φ increases from 2.5 up to 6.5 vol%. Using the cholesteric order, we determine that the twist angle between neighboring CNCs increases from about 1 ° up to 4 ° as φ increases from 2.5 up to 6.5 vol%. The dependence of the twisting on the volume fraction was related to the increase in the magnitude of the repulsive interactions between the charged rods as the average separation distance decrease. [less ▲]

Detailed reference viewed: 152 (9 UL)
Full Text
Peer Reviewed
See detailUltra-long ordered nanowires from the concerted self-assembly of discotic liquid crystal and solvent molecules.
Park, J. H.; Kim, K. H.; Park, Y. W. et al

in Langmuir (2015), 31(34), 9432-9440

The realization of long and aligned molecular wires is a great challenge and different approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules ... [more ▼]

The realization of long and aligned molecular wires is a great challenge and different approaches have been proposed. Interestingly, hexapentyloxytriphenylene (HAT5) discotic liquid crystal molecules, model system of molecules with flat and aromatic cores, can spontaneously form well aligned, micrometer long yet only tens of nanometers thick nanowires on solid surfaces. We have investigated the formation mechanism of these wires by using different solvents with selected characteristics like chemical structure, boiling point, vapor pressure and surface tension. When casting from toluene and benzene solutions, atomic force microscopy reveals that the discotics spontaneously form very long and thin wires, self-aligning along a common orientation. If instead dodecane or heptane are used, different and in general thicker structures are obtained. The chemical structure of the solvent appears to have a key role, coupling to the liquid crystal self-assembly by allowing solvent molecules to enter in the ordered structure if their design matches the core of HAT5 molecules, thereby guiding the assembly. However, also other aspects are relevant in the assembly, like the nature of the substrate or the rate of solvent evaporation, and these can favor or interfere with the self-assembly into long structures. The use of solvents with aromatic structure is advantageous not only because it affects the geometry of the assembly, promoting long wire formation, but it is also compatible with good quality of the intermolecular order, as suggested by a high anisotropy of the Raman spectra of the nanowires formed from these solvents. Finally, the electrical properties of ordered systems show a clearly higher electrical conductivity compared to the disorganized aggregates. [less ▲]

Detailed reference viewed: 95 (0 UL)
Full Text
Peer Reviewed
See detailPhase Instability and Molecular Kinetics Provoked by Repeated Crossing of the Demixing Transition of PNIPAM Solutions
Aleksandrova, Ralitsa UL; Philipp, Martine; Müller, Ulrich et al

in Langmuir (2014), 30

The demixing process of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions can occur either via a nucleation and growth process or via spinodal decomposition. The ensuing self-assembly, leading to ... [more ▼]

The demixing process of aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions can occur either via a nucleation and growth process or via spinodal decomposition. The ensuing self-assembly, leading to heterogeneous morphologies within the PNIPAM solution, is codetermined by kinetic processes caused by molecular transport. By subjecting PNIPAM solutions to cyclic changes in temperature leading to repeated crossing of the demixing transition, we are able to assess the importance of kinetics as well as of overheating and supercooling of the phase transition within the metastable range delimited by the binodal and spinodal lines. First indications about the location of these stability limits for the low- and high-temperature phases, separated by about 1.6 K, could be gained by detailed kinetic studies of the refractive index. These investigations are made possible due to the novel technique of temperature-modulated optical refractometry. [less ▲]

Detailed reference viewed: 92 (3 UL)