References of "Journal of Applied Physics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTemperature-dependent photo-response in multiferroic BiFeO3 revealed by transmission measurements
Meggle, F.; Viret, M.; Kreisel, Jens UL et al

in JOURNAL OF APPLIED PHYSICS (2019), 125(11),

We studied the light-induced effects in BiFeO3 single crystals as a function of temperature by means of optical spectroscopy. Here, we report the observation of several light-induced absorption features ... [more ▼]

We studied the light-induced effects in BiFeO3 single crystals as a function of temperature by means of optical spectroscopy. Here, we report the observation of several light-induced absorption features which are discussed in terms of the photostriction effect and are interpreted in terms of excitons. The temperature dependence of their energy position suggests a possible coupling between the excitons and the lattice vibrations. Moreover, there are hints for anomalies in the temperature evolution of the excitonic features, which might be related to the temperature-induced magnetic phase transitions in BiFeO3. Our findings suggest a coupling between light-induced excitons and the lattice and spin degrees of freedom, which might be relevant for the observed ultrafast photostriction effect in multiferroic BiFeO3. Published under license by AIP Publishing. [less ▲]

Detailed reference viewed: 37 (0 UL)
Full Text
Peer Reviewed
See detailHall measurements on low-mobility thin films
Werner, Florian UL

in Journal of Applied Physics (2017), 122

Detailed reference viewed: 113 (5 UL)
Full Text
Peer Reviewed
See detailThickness dependence of the resistivity of platinum-group metal thin films
Dutta, S.; Sankaran, K.; Moors, Kristof UL et al

in Journal of Applied Physics (2017), 122(2),

We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm ... [more ▼]

We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings. [less ▲]

Detailed reference viewed: 115 (1 UL)
Full Text
Peer Reviewed
See detailImpact of annealing on electrical properties of Cu2ZnSnSe4 absorber layers
Weiss, Thomas UL; Redinger, Alex UL; Rey, Germain UL et al

in Journal of Applied Physics (2016), 120

Detailed reference viewed: 137 (10 UL)
Full Text
Peer Reviewed
See detailIntragrain charge transport in kesterite thin films-Limits arising from carrier localization
Hempel, Hannes; Redinger, Alex UL; Repins, Ingrid et al

in JOURNAL OF APPLIED PHYSICS (2016), 120(17),

Intragrain charge carrier mobilities measured by time-resolved terahertz spectroscopy in state of the art Cu2ZnSn(S,Se)(4) kesterite thin films are found to increase from 32 to 140 cm(2) V-1 s(-1) with ... [more ▼]

Intragrain charge carrier mobilities measured by time-resolved terahertz spectroscopy in state of the art Cu2ZnSn(S,Se)(4) kesterite thin films are found to increase from 32 to 140 cm(2) V-1 s(-1) with increasing Se content. The mobilities are limited by carrier localization on the nanometer-scale, which takes place within the first 2 ps after carrier excitation. The localization strength obtained from the Drude-Smith model is found to be independent of the excited photocarrier density. This is in accordance with bandgap fluctuations as a cause of the localized transport. Charge carrier localization is a general issue in the probed kesterite thin films, which were deposited by co-evaporation colloidal inks, and sputtering followed by annealing with varying Se/S contents and yield 4.9\%-10.0 efficiency in the completed device. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [less ▲]

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailDoping mechanism in pure CuInSe2
Werner, Florian UL; Colombara, Diego UL; Melchiorre, Michele UL et al

in JOURNAL OF APPLIED PHYSICS (2016), 119

Detailed reference viewed: 170 (15 UL)
Full Text
Peer Reviewed
See detailPhotoluminescence studies in epitaxial CZTSe thin films
Sendler, Jan UL; Thevenin, Maxime UL; Werner, Florian UL et al

in Journal of Applied Physics (2016), 120

Detailed reference viewed: 172 (6 UL)
Full Text
Peer Reviewed
See detailSynthesis and magnetic properties of Ta/NdFeB-based composite microwires
Szary, Philipp; Luciu, Ioana; Duday, David et al

in Journal of Applied Physics (2015), 117

Detailed reference viewed: 90 (9 UL)
Full Text
Peer Reviewed
See detailMultiple phases of Cu2ZnSnSe4 detected by room temperature photoluminescence (vol 116, 073509, 2014)
Djemour, Rabie; Redinger, Alex UL; Mousel, Marina et al

in JOURNAL OF APPLIED PHYSICS (2015), 118(8),

Detailed reference viewed: 49 (1 UL)
Full Text
Peer Reviewed
See detailDetection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry
Demircio glu, Ozden; Mousel, Marina UL; Redinger, Alex UL et al

in JOURNAL OF APPLIED PHYSICS (2015), 118

Detailed reference viewed: 158 (3 UL)
Full Text
Peer Reviewed
See detailAtom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films
Schwarz, T.; Cojocaru-Mir edin, O.; Choi, P. et al

in Journal of Applied Physics (2015), 118

Detailed reference viewed: 144 (5 UL)
Full Text
Peer Reviewed
See detailCurrent loss due to recombination in Cu-rich CuInSe2 solar cells
Depredurand, Valérie UL; Tanaka, Daisuke; Aida, Yasuhiro UL et al

in JOURNAL OF APPLIED PHYSICS (2014), 115

Detailed reference viewed: 225 (11 UL)
Full Text
Peer Reviewed
See detailModulated photocurrent experiments-comparison of different data treatments
Luckas, Jennifer Maria UL; Longeaud; Siebentritt, Susanne UL

in JOURNAL OF APPLIED PHYSICS (2014), 116

Detailed reference viewed: 115 (2 UL)
Full Text
Peer Reviewed
See detailMultiple phases of Cu2ZnSnSe4 detected by room temperature photoluminescence
Djemour, Rabie UL; Redinger, Alex UL; Mousel, Marina UL et al

in Journal of Applied Physics (2014), 116

Detailed reference viewed: 137 (7 UL)
Full Text
Peer Reviewed
See detailReconstructions and electronic structure of (11-22) and (11-2-2) semipolar AlN surfaces
Kalesaki, Efterpi UL; Lymperakis, Liverios; Kioseoglou, Joseph et al

in Journal of Applied Physics (2012), 112

The energetics, atomic geometry, and electronic structure of semipolar (11-22) and (11-2-2) AlN surfaces are investigated employing first principles calculations. For metal-rich growth conditions ... [more ▼]

The energetics, atomic geometry, and electronic structure of semipolar (11-22) and (11-2-2) AlN surfaces are investigated employing first principles calculations. For metal-rich growth conditions, metallic reconstructions are favoured on both polarity surfaces. For N rich to moderate Al rich conditions, the (11-22) planes promote semiconducting reconstructions having 2 × 2 or c(2 × 2) periodicity. In contrast, under the particular range of the Al chemical potential the (11-2-2) surfaces stabilize reconstructions with excess metal and it is only at the extreme N rich limit that the semiconducting c(2 × 2) N adatom structure prevails. The present study reveals that the reconstructed (11-22) surfaces do not contain steps in contrast to (11-2-2) where surface steps are inherent for N rich to moderate metal rich growth conditions and may result in intrinsic step-flow growth and/or growth of parasitic semipolar orientations. [less ▲]

Detailed reference viewed: 66 (2 UL)
Full Text
Peer Reviewed
See detailInterfaces between nonpolar and semipolar III-nitride semiconductor orientations: Structure and defects
Kioseoglou, Joseph; Lotsari, Antiopi; Kalesaki, Efterpi UL et al

in Journal of Applied Physics (2012), 111

Observations of easy transition between nonpolar and semipolar orientations during III-Nitride heteroepitaxy identify the 90o <-12-10> rotation relationship as being very important in defining this ... [more ▼]

Observations of easy transition between nonpolar and semipolar orientations during III-Nitride heteroepitaxy identify the 90o <-12-10> rotation relationship as being very important in defining this coexistence. A rigorous analysis of this relationship using the topological theory of interfaces showed that it leads to a high order of coincident symmetry and makes energetically favorable the appearance of the intergranular boundaries. Principal low-energy boundaries, that could also be technologically exploited, have been identified by high-resolution transmission electron microscopy (HRTEM) observations and have been studied energetically using empirical potential calculations. It is also shown that these boundaries can change their average orientation by incorporating disconnections. The pertinent strain relaxation mechanisms can cause such boundaries to act as sources of threading dislocations and stacking faults. The energetically favorable (10-10) // (0001) boundary was frequently observed to delimit m-plane crystallites in (-12-12) semipolar growth. [less ▲]

Detailed reference viewed: 51 (0 UL)
Full Text
Peer Reviewed
See detailScrew threading dislocations in AlN: Structural and electronic properties of In and O doped material
Kioseoglou, Joseph; Kalesaki, Efterpi UL; Belabbas, Imad et al

in Journal of Applied Physics (2011), 110

Density functional theory calculations were performed on undoped AlN screw threading dislocations (TDs) as well as TDs doped by indium and oxygen, prompted by integrated experiments through transmission ... [more ▼]

Density functional theory calculations were performed on undoped AlN screw threading dislocations (TDs) as well as TDs doped by indium and oxygen, prompted by integrated experiments through transmission electron microscopy and spectroscopic techniques demonstrating enhanced In and O concentrations in screw dislocation cores. It is revealed that screw TDs act as conduction pathways to charge carriers, introducing multiple levels in the bandgap due to overstrained, dangling, and “wrong” bonds formed even in the undoped cores. The presence of impurities and especially metallic In elevates the metal-like electronic structure of the distorted material and promotes the conductivity along the dislocation line. Hence screw dislocations in AlN are established as highly prominent conductive nanowires in semiconducting thin films and prospects for novel, highly functional nano-device materials through exploitation of screw TDs are attested. [less ▲]

Detailed reference viewed: 66 (0 UL)
Full Text
Peer Reviewed
See detailElectronic structure of 1/6⟨20-23⟩ partial dislocations in wurtzite GaN
Kioseoglou, Joseph; Kalesaki, Efterpi UL; Lymperakis, Liverios et al

in Journal of Applied Physics (2011), 109

The I1 intrinsic basal stacking faults (BSFs) are acknowledged as the principal defects observed on {11-20} (a-plane) and {1-100} (m-plane) grown GaN. Their importance is established by recent ... [more ▼]

The I1 intrinsic basal stacking faults (BSFs) are acknowledged as the principal defects observed on {11-20} (a-plane) and {1-100} (m-plane) grown GaN. Their importance is established by recent experimental results, which correlate the partial dislocations (PDs) bounding I1 BSFs to the luminescence characteristics of GaN. PDs are also found to play a critical role in the alleviation of misfit strain in hetero-epitaxially grown nonpolar and semipolar films. In the present study, the energetics and the electronic structure of twelve edge and mixed 1/6⟨20-23⟩ PD configurations are investigated by first principles calculations. The specific PD cores of the dislocation loop bounding the I1 BSF are identified for III-rich and N-rich growth conditions. The core structures of PDs induce multiple shallow and deep states, attributed to the low coordinated core atoms, indicating that the cores are electrically active. In contrast to edge type threading dislocations no strain induced states are found. [less ▲]

Detailed reference viewed: 60 (0 UL)