References of "IEEE Signal Processing Magazine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMultiobjective Signal Processing Optimization : The way to balance conflicting metrics in 5G systems
Bjornson, Emil; Jorswieck; Debbah et al

in IEEE Signal Processing Magazine (2014), 31(6), 14-23

The evolution of cellular networks is driven by the dream of ubiquitous wireless connectivity: any data service is instantly accessible everywhere. With each generation of cellular networks, we have moved ... [more ▼]

The evolution of cellular networks is driven by the dream of ubiquitous wireless connectivity: any data service is instantly accessible everywhere. With each generation of cellular networks, we have moved closer to this wireless dream; first by delivering wireless access to voice communications, then by providing wireless data services, and recently by delivering a Wi-Fi-like experience with wide-area coverage and user mobility management. The support for high data rates has been the main objective in recent years [1], as seen from the academic focus on sum-rate optimization and the efforts from standardization bodies to meet the peak rate requirements specified in IMT-Advanced. In contrast, a variety of metrics/objectives are put forward in the technological preparations for fifth-generation (5G) networks: higher peak rates, improved coverage with uniform user experience, higher reliability and lower latency, better energy efficiency (EE), lower-cost user devices and services, better scalability with number of devices, etc. These multiple objectives are coupled, often in a conflicting manner such that improvements in one objective lead to degradation in the other objectives. Hence, the design of future networks calls for new optimization tools that properly handle the existence of multiple objectives and tradeoffs between them. [less ▲]

Detailed reference viewed: 98 (6 UL)
Full Text
Peer Reviewed
See detailOptimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure [Lecture Notes]
Björnson, Emil; Bengtsson; Ottersten, Björn UL

in IEEE Signal Processing Magazine (2014), 31(4), 142-148

Transmit beamforming is a versatile technique for signal transmission from an array of antennas to one or multiple users [1]. In wireless communications, the goal is to increase the signal power at the ... [more ▼]

Transmit beamforming is a versatile technique for signal transmission from an array of antennas to one or multiple users [1]. In wireless communications, the goal is to increase the signal power at the intended user and reduce interference to nonintended users. A high signal power is achieved by transmitting the same data signal from all antennas but with different amplitudes and phases, such that the signal components add coherently at the user. Low interference is accomplished by making the signal components add destructively at nonintended users. This corresponds mathematically to designing beamforming vectors (that describe the amplitudes and phases) to have large inner products with the vectors describing the intended channels and small inner products with nonintended user channels. [less ▲]

Detailed reference viewed: 203 (3 UL)
Full Text
Peer Reviewed
See detailConvex Optimization-based Beamforming: From Receive to Transmit and Network Designs
Gershman, Alex B.; Sidiropoulos, Nicholas D.; Shahbazpanahi, Shahram et al

in IEEE Signal Processing Magazine (2010), 27(3), 62-75

In this article, an overview of advanced convex optimization approaches to multisensor beamforming is presented, and connections are drawn between different types of optimization-based beamformers that ... [more ▼]

In this article, an overview of advanced convex optimization approaches to multisensor beamforming is presented, and connections are drawn between different types of optimization-based beamformers that apply to a broad class of receive, transmit, and network beamformer design problems. It is demonstrated that convex optimization provides an indispensable set of tools for beamforming, enabling rigorous formulation and effective solution of both long-standing and emerging design problems. [less ▲]

Detailed reference viewed: 158 (2 UL)