References of "Engineering Analysis with Boundary Elements"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailStructural shape optimization by IGABEM and particle swarm optimization algorithm
Sun, S. H.; Yu, T. T.; Nguyen, Thanh Tung UL et al

in Engineering Analysis with Boundary Elements (2018), 88

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailMicro-structured materials: inhomogeneities and imperfect interfaces in plane micropolar elasticity, a boundary element approach
Atroshchenko, Elena; Hale, Jack UL; Videla, Javier A. et al

in Engineering Analysis with Boundary Elements (2017), 83

In this paper we tackle the simulation of microstructured materials modelled as heterogeneous Cosserat media with both perfect and imperfect interfaces. We formulate a boundary value problem for an ... [more ▼]

In this paper we tackle the simulation of microstructured materials modelled as heterogeneous Cosserat media with both perfect and imperfect interfaces. We formulate a boundary value problem for an inclusion of one plane strain micropolar phase into another micropolar phase and reduce the problem to a system of boundary integral equations, which is subsequently solved by the boundary element method. The inclusion interface condition is assumed to be imperfect, which permits jumps in both displacements/microrotations and tractions/couple tractions, as well as a linear dependence of jumps in displacements/microrotations on continuous across the interface tractions/couple traction (model known in elasticity as homogeneously imperfect interface). These features can be directly incorporated into the boundary element formulation. The BEM-results for a circular inclusion in an in finite plate are shown to be in excellent agreement with the analytical solutions. The BEM-results for inclusions in finite plates are compared with the FEM-results obtained with FEniCS. [less ▲]

Detailed reference viewed: 154 (12 UL)
Full Text
Peer Reviewed
See detailA linear smoothed higher-order CS-FEM for the analysis of notched laminated composites
Wan, Detao; Hu, Dean; Natarajan, Sundararajan et al

in Engineering Analysis with Boundary Elements (2017), 85

Higher-order elements with highly accurate solutions are attractive for stress analysis and stress concentration problems. However, the distorted eight-node serendipity quadrilateral element is known to ... [more ▼]

Higher-order elements with highly accurate solutions are attractive for stress analysis and stress concentration problems. However, the distorted eight-node serendipity quadrilateral element is known to yield inaccurate re- sults and sub-optimal convergence rate. In this paper, we present a higher order CS-FEM to alleviate the effect of distorted mesh and guarantee the quality of solutions by employing a linear smoothing technique over eight-node quadratic serendipity elements. The modified. strain matrix is computed by the divergence theorem between the nodal shape functions and their derivatives using Taylor’s expansion of the weak form. The proposed method eliminates the need for isoparametric mapping and numerical studies demonstrate that the proposed method is insensitive to mesh distortion. The improved accuracy and superior convergence rates are numerically demon- strated with a few benchmark problems. The analysis of the stress concentration around cutouts also proves that the present method has good performance for the laminated composites. [less ▲]

Detailed reference viewed: 51 (1 UL)
Full Text
Peer Reviewed
See detailAn implicit potential method along with a meshless technique for incompressible fluid flows for regular and irregular geometries in 2D and 3D
Bourantas, Georgios UL; Loukopoulos, V. C.; Chowdhury, H. A. et al

in Engineering Analysis with Boundary Elements (2017), 77

We present the Implicit Potential (IPOT) numerical scheme developed in the framework of meshless point collocation. The proposed scheme is used for the numerical solution of the steady state ... [more ▼]

We present the Implicit Potential (IPOT) numerical scheme developed in the framework of meshless point collocation. The proposed scheme is used for the numerical solution of the steady state, incompressible Navier-Stokes (N-S) equations in their primitive variable (u-v-w-p) formulation. The governing equations are solved in their strong form using either a collocated or a semi-staggered type meshless nodal configuration. The unknown field functions and derivatives are calculated using the Modified Moving Least Squares (MMLS) interpolation method. Both velocity-correction and pressure correction methods applied ensure the incompressibility constraint and mass conservation. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it can be applied, in a straightforward manner to: steady, unsteady, internal and external fluid flows in 2D and 3D, (ii) it equally applies to regular an irregular geometries, (iii) a distribution of points is sufficient, no numerical integration in space nor any mesh structure are required, (iv) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (v) it is quite simple and accurate, (vi) results can be obtained using collocated or semi-staggered nodal distributions, (vii) there is no need to compute the velocity potential nor the unit normal vectors and (viii) there is no need for a curvilinear system of coordinates. Simulations of fluid flow in 2D and 3D for regular and irregular geometries indicate the validity of the proposed methodology. [less ▲]

Detailed reference viewed: 32 (2 UL)
Full Text
Peer Reviewed
See detailEnriched finite elements for branching cracks in deformable porous media
Sheng, M.; Li, G.; Shah, S. et al

in Engineering Analysis with Boundary Elements (2015), 50

In this paper, we propose and verify a numerical approach to simulate fluid flow in deformable porous media without requiring the discretization to conform to the geometry of the sealed fractures ... [more ▼]

In this paper, we propose and verify a numerical approach to simulate fluid flow in deformable porous media without requiring the discretization to conform to the geometry of the sealed fractures (possibly intersecting). This approach is based on a fully coupled hydro-mechanical analysis and an extended finite element method (XFEM) to represent discrete fractures. Convergence tests indicate that the proposed scheme is both consistent and stable. The contributions of this paper include: (1) a new junction enrichment to describe intersecting fractures in deformable porous media; (2) the treatment of sealed fractures. We employ the resulting discretization scheme to perform numerical experiments, to illustrate that the inclination angles of the fractures and the penetration ratio of the sealed fractures are two key parameters governing the flow within the fractured porous medium. [less ▲]

Detailed reference viewed: 183 (6 UL)