References of "Database: the Journal of Biological Databases and Curation"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCOMPARTMENTS: unification and visualization of protein subcellular localization evidence.
Binder, Janos X. UL; Pletscher-Frankild, Sune; Tsafou, Kalliopi et al

in Database: the Journal of Biological Databases and Curation (2014), 2014

Information on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such information is manually curated from the literature, obtained from high ... [more ▼]

Information on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such information is manually curated from the literature, obtained from high-throughput microscopy-based screens and predicted from primary sequence. To get a comprehensive view of the localization of a protein, it is thus necessary to consult multiple databases and prediction tools. To address this, we present the COMPARTMENTS resource, which integrates all sources listed above as well as the results of automatic text mining. The resource is automatically kept up to date with source databases, and all localization evidence is mapped onto common protein identifiers and Gene Ontology terms. We further assign confidence scores to the localization evidence to facilitate comparison of different types and sources of evidence. To further improve the comparability, we assign confidence scores based on the type and source of the localization evidence. Finally, we visualize the unified localization evidence for a protein on a schematic cell to provide a simple overview. Database URL: http://compartments.jensenlab.org. [less ▲]

Detailed reference viewed: 76 (2 UL)
Full Text
Peer Reviewed
See detailGPCRs, G-proteins, Effectors and their interactions: Human-gpDB, a database employing advanced visualization tools and data integration techniques
Satagopam, Venkata UL; Theodoropoulou, Margarita C.; Christos, Stampolakis K. et al

in Database: the Journal of Biological Databases and Curation (2010)

G-protein coupled receptors (GPCRs) are a major family of membrane receptors in eukaryotic cells. They play a crucial role in the communication of a cell with the environment. Ligands bind to GPCRs on the ... [more ▼]

G-protein coupled receptors (GPCRs) are a major family of membrane receptors in eukaryotic cells. They play a crucial role in the communication of a cell with the environment. Ligands bind to GPCRs on the outside of the cell, activating them by causing a conformational change, and allowing them to bind to G-proteins. Through their interaction with G-proteins, several effector molecules are activated leading to many kinds of cellular and physiological responses. The great importance of GPCRs and their corresponding signal transduction pathways is indicated by the fact that they take part in many diverse disease processes and that a large part of efforts towards drug development today is focused on them. We present Human-gpDB, a database which currently holds information about 713 human GPCRs, 36 human G-proteins and 99 human effectors. The collection of information about the interactions between these molecules was done manually and the current version of Human-gpDB holds information for about 1663 connections between GPCRs and G-proteins and 1618 connections between G-proteins and effectors. Major advantages of Human-gpDB are the integration of several external data sources and the support of advanced visualization techniques. Human-gpDB is a simple, yet a powerful tool for researchers in the life sciences field as it integrates an up-to-date, carefully curated collection of human GPCRs, G-proteins, effectors and their interactions. The database may be a reference guide for medical and pharmaceutical research, especially in the areas of understanding human diseases and chemical and drug discovery. [less ▲]

Detailed reference viewed: 70 (4 UL)
Full Text
Peer Reviewed
See detailGPCRs, G-proteins, effectors and their interactions: human-gpDB, a database employing visualization tools and data integration techniques.
Satagopam, Venkata UL; Theodoropoulou, Margarita C.; Stampolakis, Christos K. et al

in Database: the Journal of Biological Databases and Curation (2010), 2010

G-protein coupled receptors (GPCRs) are a major family of membrane receptors in eukaryotic cells. They play a crucial role in the communication of a cell with the environment. Ligands bind to GPCRs on the ... [more ▼]

G-protein coupled receptors (GPCRs) are a major family of membrane receptors in eukaryotic cells. They play a crucial role in the communication of a cell with the environment. Ligands bind to GPCRs on the outside of the cell, activating them by causing a conformational change, and allowing them to bind to G-proteins. Through their interaction with G-proteins, several effector molecules are activated leading to many kinds of cellular and physiological responses. The great importance of GPCRs and their corresponding signal transduction pathways is indicated by the fact that they take part in many diverse disease processes and that a large part of efforts towards drug development today is focused on them. We present Human-gpDB, a database which currently holds information about 713 human GPCRs, 36 human G-proteins and 99 human effectors. The collection of information about the interactions between these molecules was done manually and the current version of Human-gpDB holds information for about 1663 connections between GPCRs and G-proteins and 1618 connections between G-proteins and effectors. Major advantages of Human-gpDB are the integration of several external data sources and the support of advanced visualization techniques. Human-gpDB is a simple, yet a powerful tool for researchers in the life sciences field as it integrates an up-to-date, carefully curated collection of human GPCRs, G-proteins, effectors and their interactions. The database may be a reference guide for medical and pharmaceutical research, especially in the areas of understanding human diseases and chemical and drug discovery. Database URLs: http://schneider.embl.de/human_gpdb; http://bioinformatics.biol.uoa.gr/human_gpdb/ [less ▲]

Detailed reference viewed: 107 (2 UL)
Full Text
Peer Reviewed
See detailFinding and sharing: new approaches to registries of databases and services for the biomedical sciences
Smedley, D.; Schofield, P.; Chen, C. K. et al

in Database: the Journal of Biological Databases and Curation (2010), Jul 6

The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their ... [more ▼]

The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their needs, and the most efficient way to access and use them. Despite a rapid acceleration in uptake of syntactic and semantic standards for interoperability, it is still difficult for users to find which databases support the standards and interfaces that they need. To solve these problems, several groups are developing registries of databases that capture key metadata describing the biological scope, utility, accessibility, ease-of-use and existence of web services allowing interoperability between resources. Here, we describe some of these initiatives including a novel formalism, the Database Description Framework, for describing database operations and functionality and encouraging good database practise. We expect such approaches will result in improved discovery, uptake and utilization of data resources. Database URL: http://www.casimir.org.uk/casimir_ddf. [less ▲]

Detailed reference viewed: 120 (3 UL)