References of "International Journal for Numerical Methods in Engineering"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOn the approximation in the smoothed finite element method (SFEM)
Bordas, Stéphane UL; Natarajan, S.

in International Journal for Numerical Methods in Engineering (2010), 81(5), 660-670

This letter aims at resolving the issues raised in the recent short communication (Int. J. Numer. Meth. Engng 2008; 76(8):1285-1295. DOI: 10.1002/nme.2460) and answered by (Int. J. Numer. Meth. Engng 2009 ... [more ▼]

This letter aims at resolving the issues raised in the recent short communication (Int. J. Numer. Meth. Engng 2008; 76(8):1285-1295. DOI: 10.1002/nme.2460) and answered by (Int. J. Numer. Meth. Engng 2009; DOI: 10.1002/nme.2587) by proposing a systematic approximation scheme based on non-mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) (Comput. Mech. 2007; 39(6):859-877. DOI: 10.1007/s00466-006-0075-4; Commun. Numer. Meth. Engng 2009; 25(1):19-34. DOI: 10.1002/cnm.1098; Int. J. Numer. Meth. Engng 2007; 71(8):902-930; Comput. Meth. Appl. Mech. Engng 2008; 198(2):165-177. DOI: 10.1016/j.cma.2008.05.029; Comput. Meth. Appl. Mech. Engng 2007; submitted; Int. J. Numer. Meth. Engng 2008; 74(2):175-208. DOI: 10.1002/nme.2146; Comput. Meth. Appl. Mech. Engng 2008; 197 (13-16):1184-1203. DOI: 10.1016/j.cma.2007.10.008) and resolve the existence, linearity and positivity deficiencies pointed out in (Int. J. Numer. Meth. Engng 2008; 76(8):1285-1295). We show that Wachspress interpolants (A Rational Basis for Function Approximation. Academic Press, Inc.: New York, 1975) computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results that are almost identical to those of the SFEM initially proposed in (Comput. Mech. 2007; 39(6):859-877. DOI: 10.1007/s00466-006-0075-4). These results suggest that the proposed approximation scheme forms a strong and rigorous basis for the construction of SFEMs. © 2009 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 124 (4 UL)
Full Text
Peer Reviewed
See detailIntegrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework
Natarajan, S.; Roy Mahapatra, D.; Bordas, Stéphane UL

in International Journal for Numerical Methods in Engineering (2010), 83(3), 269-294

Partition of unity methods, such as the extended finite element method, allows discontinuities to be simulated independently of the mesh (Int. J. Numer. Meth. Engng. 1999; 45:601-620). This eliminates the ... [more ▼]

Partition of unity methods, such as the extended finite element method, allows discontinuities to be simulated independently of the mesh (Int. J. Numer. Meth. Engng. 1999; 45:601-620). This eliminates the need for the mesh to be aligned with the discontinuity or cumbersome re-meshing, as the discontinuity evolves. However, to compute the stiffness matrix of the elements intersected by the discontinuity, a subdivision of the elements into quadrature subcells aligned with the discontinuity is commonly adopted. In this paper, we use a simple integration technique, proposed for polygonal domains (Int. J. Numer. Meth. Engng 2009; 80(1):103-134. DOI: 10.1002/nme.2589) to suppress the need for element subdivision. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics and a multi-material problem show that the proposed method yields accurate results. Owing to its simplicity, the proposed integration technique can be easily integrated in any existing code. © 2010 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 183 (0 UL)
Full Text
Peer Reviewed
See detailA localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (XFEM)
Zilian, Andreas UL; Fries, T.-P.

in International Journal for Numerical Methods in Engineering (2009), 79(6), 733-752

The paper proposes an approach for the imposition of constraints along moving or fixed immersed interfaces in the context of the extended finite element method. An enriched approximation space enables ... [more ▼]

The paper proposes an approach for the imposition of constraints along moving or fixed immersed interfaces in the context of the extended finite element method. An enriched approximation space enables consistent representation of strong and weak discontinuities in the solution fields along arbitrarily-shaped material interfaces using an unfitted background mesh. The use of Lagrange multipliers or penalty methods is circumvented by a localized mixed hybrid formulation of the model equations. In a defined region in the vicinity of the interface, the original problem is re-stated in its auxiliary formulation. The availability of the auxiliary variable enables the consideration of a variety of interface constraints in the weak form. The contribution discusses the weak imposition of Dirichlet- and Neumann-type interface conditions as well as continuity requirements not fulfilled a priori by the enriched approximation. The properties of the proposed approach applied to two-dimensional linear scalar- and vector-valued elliptic problems are investigated by studying the convergence behavior. © 2009 John Wiley & Sons,Ltd. [less ▲]

Detailed reference viewed: 71 (0 UL)
Full Text
Peer Reviewed
See detailSpace-time meshfree collocation method: Methodology and application to initial-boundary value problems
Netuzhylov, H.; Zilian, Andreas UL

in International Journal for Numerical Methods in Engineering (2009), 80(3), 355-380

A novel space-time meshfree collocation method (STMCM) for solving systems of non-linear ordinary and partial differential equations by a consistent discretization in both space and time is proposed as an ... [more ▼]

A novel space-time meshfree collocation method (STMCM) for solving systems of non-linear ordinary and partial differential equations by a consistent discretization in both space and time is proposed as an alternative to established mesh-based methods. The STMCM belongs to the class of truly meshfree methods, i.e. the methods that do not have any underlying mesh, but work on a set of nodes only without any a priori node-to-node connectivity. Instead, the neighbouring information is established on-the-fly. The STMCM is constructed using the Interpolating Moving Least-squares technique, which allows a simplified implementation of boundary conditions due to fulfillment of the Kronecker delta property by the kernel functions, which is not the case for the major part of other meshfree methods. The method is validated by several examples ranging from interpolation problems to the solution of PDEs, whereas the STMCM solutions are compared with either analytical or reference ones. © 2009 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 116 (4 UL)
Full Text
Peer Reviewed
See detailOn time integration in the XFEM
Fries, T.-P.; Zilian, Andreas UL

in International Journal for Numerical Methods in Engineering (2009), 79(1), 69-93

The extended finite element method (XFEM) is often used in applications that involve moving interfaces. Examples are the propagation of cracks or the movement of interfaces in two-phase problems. This ... [more ▼]

The extended finite element method (XFEM) is often used in applications that involve moving interfaces. Examples are the propagation of cracks or the movement of interfaces in two-phase problems. This work focuses on time integration in the XFEM. The performance of the discontinuous Galerkin method in time (space-time finite elements (FEs)) and time-stepping schemes are analyzed by convergence studies for different model problems. It is shown that space-time FE achieve optimal convergence rates. Special care is required for time stepping in the XFEM due to the time dependence of the enrichment functions. In each time step, the enrichment functions have to be evaluated at different time levels. This has important consequences in the quadrature used for the integration of the weak form. A time-stepping scheme that leads to optimal or only slightly sub-optimal convergence rates is systematically constructed in this work. © 2009 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 72 (3 UL)
Full Text
Peer Reviewed
See detailNumerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping
Natarajan, S.; Bordas, Stéphane UL; Roy mahapatra, D.

in International Journal for Numerical Methods in Engineering (2009), 80(1), 103-134

This paper presents a new numerical integration technique on arbitrary polygonal domains. The polygonal domain is mapped conformally to the unit disk using Schwarz-Christoffel mapping and a midpoint ... [more ▼]

This paper presents a new numerical integration technique on arbitrary polygonal domains. The polygonal domain is mapped conformally to the unit disk using Schwarz-Christoffel mapping and a midpoint quadrature rule defined on this unit disk is used. This method eliminates the need for a two-level isoparametric mapping usually required. Moreover, the positivity of the Jacobian is guaranteed. Numerical results presented for a few benchmark problems in the context of polygonal finite elements show that the proposed method yields accurate results. © 2009 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 185 (0 UL)
Full Text
Peer Reviewed
See detailA combined extended finite element and level set method for biofilm growth
Duddu, Ravindra; Bordas, Stéphane UL; Chopp, David et al

in International Journal for Numerical Methods in Engineering (2008), 74(5), 848-870

This paper presents a computational technique based on the extended finite element method (YFEM) and the level set method for the growth of biofilms. The discontinuous-derivative enrichment of the ... [more ▼]

This paper presents a computational technique based on the extended finite element method (YFEM) and the level set method for the growth of biofilms. The discontinuous-derivative enrichment of the standard finite element approximation eliminates the need for the finite element mesh to coincide with the biofilm-fluid interface and also permits the introduction of the discontinuity in the normal derivative of the substrate concentration field at the biofilm-fluid interface. The XFEM is coupled with a comprehensive level set update scheme with velocity extensions, which makes updating the biofilm interface fast and accurate without need for remeshing. The kinetics of biofilms are briefly given and the non-linear strong and weak forms are presented. The non-linear system of equations is solved using a Newton-Raphson scheme. Example problems including 1D and 2D biofilm growth are presented to illustrate the accuracy and utility of the method. The 1D results we obtain are in excellent agreement with previous 1D results obtained using finite difference methods. Our 2D results that simulate finger formation and finger-tip splitting in biofilms illustrate the robustness of the present computational technique. [less ▲]

Detailed reference viewed: 61 (1 UL)
Full Text
Peer Reviewed
See detailA posteriori error estimation for extended finite elements by an extended global recovery
Duflot, M.; Bordas, Stéphane UL

in International Journal for Numerical Methods in Engineering (2008), 76(8), 1123-1138

This contribution presents an extended global derivative recovery for enriched finite element methods (FEMs), such as the extended FEM along with an associated error indicator. Owing to its simplicity ... [more ▼]

This contribution presents an extended global derivative recovery for enriched finite element methods (FEMs), such as the extended FEM along with an associated error indicator. Owing to its simplicity, the proposed scheme is ideally suited to industrial applications. The procedure is based on global minimization of the L2 norm of the difference between the raw strain field (C-1) and the recovered (C0) strain field. The methodology engineered in this paper extends the ideas of Oden and Brauchli (Int. J. Numer. Meth. Engng 1971; 3) and Hinton and Campbell (Int. J. Numer. Meth. Engng 1974; 8) by enriching the approximation used for the construction of the recovered derivatives (strains) with the gradients of the functions employed to enrich the approximation employed for the primal unknown (displacements). We show linear elastic fracture mechanics examples, both in simple two-dimensional settings, and for a three-dimensional structure. Numerically, we show that the effectivity index of the proposed indicator converges to unity upon mesh refinement. Consequently, the approximate error converges to the exact error, indicating that the error indicator is valid. Additionally, the numerical examples suggest a novel adaptive strategy for enriched approximations in which the dimensions of the enrichment zone are first increased, before standard h- and p-adaptivities are applied; we suggest to coin this methodology e-adaptivity. Copyright © 2008 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 113 (0 UL)
Full Text
Peer Reviewed
See detailThe enriched space-time finite element method (EST) for simultaneous solution of fluid-structure interaction
Zilian, Andreas UL; Legay, A.

in International Journal for Numerical Methods in Engineering (2008), 75(3), 305-334

The paper introduces a weighted residual-based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly ... [more ▼]

The paper introduces a weighted residual-based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled systems involving large structural motion and deformation of multiple-flow-immersed solid objects. The fluid flow is described by the incompressible Navier-Stokes equations. The current configuration of the thin structure of linear elastic material with non-linear kinematics is mapped to the flow using the zero iso-contour of an updated level set function. The formulation of fluid, structure and coupling conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a space-time finite element discretization of the domain. Interfacial constraints of the multi-field problem are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques lead to a monolithic algebraic system, well suited for strongly coupled fluid-structure systems. Embedding a thin structure into a flow results in non-smooth fields for the fluid. Based on the concept of the extended finite element method, the space-time approximations of fluid pressure and velocity are properly enriched to capture weakly and strongly discontinuous solutions. This leads to the present enriched space-time (EST) method. Numerical examples of fluid-structure interaction show the eligibility of the developed numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate the application of the proposed technique to problems where mesh moving strategies often fail. Copyright © 2007 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 105 (6 UL)
Full Text
Peer Reviewed
See detailAn extended finite element library
Bordas, Stéphane UL; Nguyen, P. V.; Dunant, C. et al

in International Journal for Numerical Methods in Engineering (2007), 71(6), 703-732

This paper presents and exercises a general structure for an object-oriented-enriched finite element code. The programming environment provides a robust tool for extended finite element (XFEM ... [more ▼]

This paper presents and exercises a general structure for an object-oriented-enriched finite element code. The programming environment provides a robust tool for extended finite element (XFEM) computations and a modular and extensible system. The programme structure has been designed to meet all natural requirements for modularity, extensibility, and robustness. To facilitate mesh-geometry interactions with hundreds of enrichment items, a mesh generator and mesh database are included. The salient features of the programme are: flexibility in the integration schemes (subtriangles, subquadrilaterals, independent near-tip, and discontinuous quadrature rules); domain integral methods for homogeneous and bi-material interface cracks arbitrarily oriented with respect to the mesh; geometry is described and updated by level sets, vector level sets or a standard method; standard and enriched approximations are independent; enrichment detection schemes: topological, geometrical, narrow-band, etc.; multi-material problem with an arbitrary number of interfaces and slip-interfaces; non-linear material models such as J2 plasticity with linear, isotropic and kinematic hardening. To illustrate the possible applications of our paradigm, we present 2D linear elastic fracture mechanics for hundreds of cracks with local near-tip refinement, and crack propagation in two dimensions as well as complex 3D industrial problems. Copyright © 2007 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 818 (6 UL)
Full Text
Peer Reviewed
See detailA well-conditioned and optimally convergent XFEM for 3D linear elastic fracture
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane UL et al

in International Journal for Numerical Methods in Engineering (n.d.)

A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and ... [more ▼]

A variation of the extended finite element method for 3D fracture mechanics is proposed. It utilizes global enrichment and point-wise as well as integral matching of displacements of the standard and enriched elements in order to achieve higher accuracy, optimal convergence rates and improved conditioning for two and three dimensional crack problems. A bespoke benchmark problem is introduced to determine the method's accuracy in the general 3D case where it is demonstrated that the proposed approach improves the accuracy and reduces the number of iterations required for the iterative solution of the resulting system of equations by 40% for moderately refined meshes and topological enrichment. Moreover, when a fixed enrichment volume is used, the number of iterations required grows at a rate which is reduced by a factor of 2 compared to standard XFEM, diminishing the number of iterations by almost one order of magnitude. [less ▲]

Detailed reference viewed: 267 (10 UL)