References of "ACCOUNTS OF CHEMICAL RESEARCH"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModeling Adsorption and Reactions of Organic Molecules at Metal Surfaces
Liu, Wei; Tkatchenko, Alexandre UL; Scheffler, Matthias

in ACCOUNTS OF CHEMICAL RESEARCH (2014), 47(11, SI), 3369-3377

CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid ... [more ▼]

CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic response effects enables reliable modeling of structure and stability for a broad class of organic molecules adsorbed on metal surfaces. This method was demonstrated to achieve quantitative accuracy for aromatic hydrocarbons (benzene, naphthalene, anthracene, and diindenoperylene), C-60, and sulfur/oxygen-containing molecules (thiophene, NTCDA, and PTCDA) on dose-packed and stepped metal surfaces, leading to an overall accuracy of 0.1 angstrom in adsorption heights and 0.1 eV in binding energies with respect to state-of-the-art experiments. An unexpected finding is that vdW interactions contribute more to the binding of strongly bound molecules on transition-metal surfaces than for molecules physisorbed on coinage metals. The accurate inclusion of vdW interactions also significantly improves tilting angles and adsorption heights for all the studied molecules, and can qualitatively change the potential-energy surface for adsorbed molecules with flexible functional groups. Activation barriers for molecular switches and reaction precursors are modified as well. [less ▲]

Detailed reference viewed: 82 (0 UL)
Full Text
Peer Reviewed
See detailUnderstanding Molecular Crystals with Dispersion-Inclusive Density Functional Theory: Pairwise Corrections and Beyond
Kronik, Leeor; Tkatchenko, Alexandre UL

in ACCOUNTS OF CHEMICAL RESEARCH (2014), 47(11, SI), 3208-3216

Molecular crystals are ubiquitous in many areas of science and engineering, including biology and medicine. Until recently, our ability to understand and predict their structure and properties using ... [more ▼]

Molecular crystals are ubiquitous in many areas of science and engineering, including biology and medicine. Until recently, our ability to understand and predict their structure and properties using density functional theory was severely limited by the lack of approximate exchangecorrelation functionals able to achieve sufficient accuracy. Here we show that there are many cases where the simple, minimally empirical pairwise correction scheme of Tkatchenko and Scheffler provides a useful prediction of the structure and properties of molecular crystals. After a brief introduction of the approach, we demonstrate its strength through some examples taken from our recent work. First, we show the accuracy of the approach using benchmark data sets of molecular complexes. Then we show its efficacy for structural determination using the hemozoin crystal, a challenging system possessing a wide range of strong and weak binding scenarios. Next, we show that it is equally useful for response properties by considering the elastic constants exhibited by the supramolecular diphenylalanine peptide solid and the infrared signature of water libration movements in brushite. Throughout, we emphasize lessons learned not only for the methodology but also for the chemistry and physics of the crystals in question. We further show that in many other scenarios where the simple pairwise correction scheme is not sufficiently accurate, one can go beyond it by employing a computationally inexpensive many-body dispersive approach that results in useful, quantitative accuracy, even in the presence of significant screening and/or multibody contributions to the dispersive energy. We explain the principles of the many-body approach and demonstrate its accuracy for benchmark data sets of small and large molecular complexes and molecular solids. [less ▲]

Detailed reference viewed: 68 (0 UL)