References of "Adebayo, Kolawole John 1150061151"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAn approach to information retrieval and question answering in the legal domain
Adebayo, Kolawole John UL; Di Caro, Luigi; Boella, Guido et al

Scientific Conference (2016, November 15)

We describe in this paper, a report of our participation at COLIEE 2016 Information Retrieval (IR) and Legal Question Answering (LQA) tasks. Our solution for the IR part employs the use of a simple but ... [more ▼]

We describe in this paper, a report of our participation at COLIEE 2016 Information Retrieval (IR) and Legal Question Answering (LQA) tasks. Our solution for the IR part employs the use of a simple but effective Machine Learning (ML) procedure. Our Question Answering solution answers "YES or 'NO' to a question, i.e., 'YES' if the question is entailed by a text and 'NO' otherwise. With recent exploit of Multi-layered Neural Network systems at language modeling tasks, we presented a Deep Learning approach which uses an adaptive variant of the Long-Short Term Memory (LSTM), i.e. the Child Sum Tree LSTM (CST-LSTM) algorithm that we modified to suit our purpose. Additionally, we benchmarked this approach by handcrafting features for two popular ML algorithms, i.e., the Support Vector Machine (SVM) and the Random Forest (RF) algorithms. Even though we used some features that have performed well from similar works, we also introduced some semantic features for performance improvement. We used the results from these two algorithms as the baseline for our CST-LSTM algorithm. All evaluation was done on the COLIEE 2015 training and test sets. The overall result conforms the competitiveness of our approach. [less ▲]

Detailed reference viewed: 92 (7 UL)