References of "martin-villalba, ana"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe hematopoietic factor granulocyte-colony stimulating factor improves outcome in experimental spinal cord injury.
Pitzer, Claudia; Klussmann, Stefan; Krüger, Carola et al

in Journal of Neurochemistry (2010), 113

Granulocyte-colony stimulating factor (G-CSF) is a potent hematopoietic factor that drives differentiation of neutrophilic granulocytes. We have recently shown that G-CSF also acts as a neuronal growth ... [more ▼]

Granulocyte-colony stimulating factor (G-CSF) is a potent hematopoietic factor that drives differentiation of neutrophilic granulocytes. We have recently shown that G-CSF also acts as a neuronal growth factor, protects neurons in vitro and in vivo, and has regenerative potential in various neurological disease models. Spinal cord injury (SCI) following trauma or secondary to skeletal instability is a terrible condition with no effective therapies available at present. In this study, we show that the G-CSF receptor is up-regulated upon experimental SCI and that G-CSF improves functional outcome in a partial dissection model of SCI. G-CSF significantly decreases apoptosis in an experimental partial spinal transsection model in the mouse and increases expression of the anti-apoptotic G-CSF target gene Bcl-X(L). In vitro, G-CSF enhances neurite outgrowth and branching capacity of hippocampal neurons. In vivo, G-CSF treatment results in improved functional connectivity of the injured spinal cord as measured by Mn(2+)-enhanced MRI. G-CSF also increased length of the dorsal corticospinal tract and density of serotonergic fibers cranial to the lesion center. Mice treated systemically with G-CSF as well as transgenic mice over-expressing G-CSF in the CNS exhibit a strong improvement in functional outcome as measured by the BBB score and gridwalk analysis. We show that G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. We conclude that G-CSF constitutes a promising and feasible new therapy option for SCI. [less ▲]

Detailed reference viewed: 60 (2 UL)
Peer Reviewed
See detailSpinal cord injuries entering the Fas(t) lane.
Letellier, Elisabeth UL; Martin-Villalba, Ana

in Neurosurgery (2007), 6

Detailed reference viewed: 15 (2 UL)
Full Text
Peer Reviewed
See detailManganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice.
Stieltjes B,; Klussmann S; Bock M et al

in Magn Reson Med (2006), 5

In past decades, much effort has been invested in developing therapies for spinal injuries. Lack of standardization of clinical read-out measures, however, makes direct comparison of experimental ... [more ▼]

In past decades, much effort has been invested in developing therapies for spinal injuries. Lack of standardization of clinical read-out measures, however, makes direct comparison of experimental therapies difficult. Damage and therapeutic effects in vivo are routinely evaluated using rather subjective behavioral tests. Here we show that manganese-enhanced magnetic resonance imaging (MEMRI) can be used to examine the extent of damage following spinal cord injury (SCI) in mice in vivo. Injection of MnCl2 solution into the cerebrospinal fluid leads to manganese uptake into the spinal cord. Furthermore, after injury MEMRI-derived quantitative measures correlate closely with clinical locomotor scores. Improved locomotion due to treating the detrimental effects of SCI with an established therapy (neutralization of CD95Ligand) is reflected in an increase of manganese uptake into the injured spinal cord. Therefore, we demonstrate that MEMRI is a sensitive and objective tool for in vivo visualization and quantification of damage and functional improvement after SCI. Thus, MEMRI can serve as a reproducible surrogate measure of the clinical status of the spinal cord in mice, potentially becoming a standard approach for evaluating experimental therapies. [less ▲]

Detailed reference viewed: 53 (2 UL)