References of "Zentel, Rudolf"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTowards tunable defect arrangements in smectic liquid crystal shells utilizing the nematic-smectic transition in hybrid-aligned geometries
Liang, Hsin-Ling; Zentel, Rudolf; Rudquist, Per et al

in Soft Matter (2012), 8(20), 5443-5450

We produce and investigate liquid crystal shells with hybrid alignment—planar at one boundary, homeotropic at the other—undergoing a transition between the nematic (N) and smectic-A (SmA) phases. The ... [more ▼]

We produce and investigate liquid crystal shells with hybrid alignment—planar at one boundary, homeotropic at the other—undergoing a transition between the nematic (N) and smectic-A (SmA) phases. The shells display a dynamic sequence of patterns, the details depending on the alignment agents and on the diameter and thickness of the shell. In shells of sufficient diameter we typically find a transient striped texture near the N–SmA transition, stabilising into a pattern of tiled, more or less regularly spaced focal conic domains in the SmA phase. The domain size and spacing decrease with reduced shell thickness. In case of strong homeotropic anchoring at one boundary and small shell size, however, the increased curvature favors homeotropic against planar alignment in the smectic phase, and the shell then tends to adapt to complete homeotropic alignment at the final stage of the transition. This is the first study of hybrid-aligned smectic shells and the results constitute a beautiful demonstration of the capacity for dynamic structure formation and reformation via self-assembly in soft matter. The new patterns extend the range of arrays of topological defects that can be realised with liquid crystals in spherical morphology and the correlation between the feature arrangements and the variable parameters of the shell and its environment opens a route towards tunability. However, the observed strong impact from increasing curvature, even for these rather large shells, indicates that the choice of alignment agents inducing planar or homeotropic alignment with varying strength will become critical when targeting the most attractive colloidal size scale of about a micron or smaller. [less ▲]

Detailed reference viewed: 113 (3 UL)
Full Text
Peer Reviewed
See detailOne-piece micropumps from liquid crystalline core-shell particles
Fleischmann, Eva-Kristina; Liang, Hsin-Ling; Kapernaum, Nadia et al

in Nature Communications (2012), 3

Responsive polymers are low-cost, light weight and flexible, and thus an attractive class of materials for the integration into micromechanical and lab-on-chip systems. Triggered by external stimuli ... [more ▼]

Responsive polymers are low-cost, light weight and flexible, and thus an attractive class of materials for the integration into micromechanical and lab-on-chip systems. Triggered by external stimuli, liquid crystalline elastomers are able to perform mechanical motion and can be utilized as microactuators. Here we present the fabrication of one-piece micropumps from liquid crystalline core-shell elastomer particles via a microfluidic double-emulsion process, the continuous nature of which enables a low-cost and rapid production. The liquid crystalline elastomer shell contains a liquid core, which is reversibly pumped into and out of the particle by actuation of the liquid crystalline shell in a jellyfish-like motion. The liquid crystalline elastomer shells have the potential to be integrated into a microfluidic system as micropumps that do not require additional components, except passive channel connectors and a trigger for actuation. This renders elaborate and high-cost micromachining techniques, which are otherwise required for obtaining microstructures with pump function, unnecessary. [less ▲]

Detailed reference viewed: 33 (0 UL)
Full Text
Peer Reviewed
See detailFerroelectric polysiloxane liquid crystals with ‘de vries’-type smectic a* -smectic c* transitions
Rössle, Martin; Zentel, Rudolf; Lagerwall, Jan UL et al

in Liquid Crystals (2004), 31(6), 883-887

We report preliminary results of optical and small angle X-ray scattering (SAXS) experiments on the smectic A*2smectic C* transition in two ferroelectric liquid crystalline polysiloxanes. Although the ... [more ▼]

We report preliminary results of optical and small angle X-ray scattering (SAXS) experiments on the smectic A*2smectic C* transition in two ferroelectric liquid crystalline polysiloxanes. Although the optical tilt angle in the SmC* phases reaches values up to 30‡, temperature-dependent SAXS measurements clearly reveal that the smectic layer spacing is basically conserved during the A*–C* transition as well as in the subsequent C* phase. Connected with the A*–C* transition we further observed a significant increase in bire- fringence, hence reflecting an increase of orientational order. The practical absence of layer shrinkage and the enhanced orientational ordering are consistent with the de Vries diffuse cone model of smectic A2smectic C transitions. [less ▲]

Detailed reference viewed: 12 (0 UL)