References of "Wolburg, Hartwig"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3.
Harmuth, Tina; Prell-Schicker, Caroline; Weber, Jonasz J. et al

in Frontiers in molecular neuroscience (2018), 11

Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting ... [more ▼]

Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting from dysfunctional mitochondria, have been reported in patients and respective animal models of all those diseases. Spinocerebellar Ataxia Type 3 (SCA3), another neurodegenerative disorder, also presents with metabolic defects and loss of body weight in early disease stages although the possible role of mitochondrial dysfunction in SCA3 pathology is still to be determined. Interestingly, the SCA3 disease protein ataxin-3, which is predominantly localized in cytoplasm and nucleus, has also been associated with mitochondria in both its mutant and wildtype form. This observation provides an interesting link to a potential mitochondrial involvement of mutant ataxin-3 in SCA3 pathogenesis. Furthermore, proteolytic cleavage of ataxin-3 has been shown to produce toxic fragments and even overexpression of artificially truncated forms of ataxin-3 resulted in mitochondria deficits. Therefore, we analyzed the repercussions of expressing a naturally occurring N-terminal cleavage fragment of ataxin-3 and the influence of an endogenous expression of the S256 cleavage fragment in vitro and in vivo. In our study, expression of a fragment derived from calpain cleavage induced mitochondrial fragmentation and cristae alterations leading to a significantly decreased capacity of mitochondrial respiration and contributing to an increased susceptibility to apoptosis. Furthermore, analyzing mitophagy revealed activation of autophagy in the early pathogenesis with reduced lysosomal activity. In conclusion, our findings indicate that cleavage of ataxin-3 by calpains results in fragments which interfere with mitochondrial function and mitochondrial degradation processes. [less ▲]

Detailed reference viewed: 72 (0 UL)
Full Text
Peer Reviewed
See detailReduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.
Krebiehl, Guido; Ruckerbauer, Sabine; Burbulla, Lena F. et al

in PloS one (2010), 5(2), 9367

BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD ... [more ▼]

BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2. CONCLUSIONS/SIGNIFICANCE: We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease. [less ▲]

Detailed reference viewed: 123 (5 UL)
Full Text
Peer Reviewed
See detailTransgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.
Nuber, Silke; Franck, Thomas; Wolburg, Hartwig et al

in Neurogenetics (2010), 11(1), 107-20

Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also ... [more ▼]

Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. [less ▲]

Detailed reference viewed: 90 (0 UL)
Full Text
Peer Reviewed
See detailModulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1.
Kieper, Nicole; Holmstrom, Kira M.; Ciceri, Dalila et al

in Experimental cell research (2010), 316(7), 1213-24

Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro ... [more ▼]

Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders. [less ▲]

Detailed reference viewed: 118 (1 UL)
Peer Reviewed
See detailLoss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.
Strauss, Karsten M.; Martins, Luisa UL; Plun-Favreau, Helene et al

in Human molecular genetics (2005), 14(15), 2099-111

Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi ... [more ▼]

Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi/HtrA2 gene in German Parkinson's disease (PD) patients. In four patients, we identified a novel heterozygous G399S mutation, which was absent in healthy controls. Moreover, we identified a novel A141S polymorphism that was associated with PD (P<0.05). Both mutations resulted in defective activation of the protease activity of Omi/HtrA2. Immunohistochemistry and functional analysis in stably transfected cells revealed that S399 mutant Omi/HtrA2 and to a lesser extent, the risk allele of the A141S polymorphism induced mitochondrial dysfunction associated with altered mitochondrial morphology. Cells overexpressing S399 mutant Omi/HtrA2 were more susceptible to stress-induced cell death than wild-type. On the basis of functional genomics, our results provide a novel link between mitochondrial dysfunction and neurodegeneration in PD. [less ▲]

Detailed reference viewed: 74 (0 UL)