References of "Wang, Min 50021106"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Real-Time 3D Path Planning Solution for Collision-Free Navigation of Multirotor Aerial Robots in Dynamic Environments
Sanchez Lopez, Jose Luis UL; Wang, Min UL; Olivares Mendez, Miguel Angel UL et al

in Journal of Intelligent and Robotic Systems (2018)

Deliberative capabilities are essential for intelligent aerial robotic applications in modern life such as package delivery and surveillance. This paper presents a real-time 3D path planning solution for ... [more ▼]

Deliberative capabilities are essential for intelligent aerial robotic applications in modern life such as package delivery and surveillance. This paper presents a real-time 3D path planning solution for multirotor aerial robots to obtain a feasible, optimal and collision-free path in complex dynamic environments. High-level geometric primitives are employed to compactly represent the situation, which includes self-situation of the robot and situation of the obstacles in the environment. A probabilistic graph is utilized to sample the admissible space without taking into account the existing obstacles. Whenever a planning query is received, the generated probabilistic graph is then explored by an A$^{\star}$ discrete search algorithm with an artificial field map as cost function in order to obtain a raw optimal collision-free path, which is subsequently shortened. Realistic simulations in V-REP simulator have been created to validate the proposed path planning solution, integrating it into a fully autonomous multirotor aerial robotic system. [less ▲]

Detailed reference viewed: 35 (3 UL)
Full Text
Peer Reviewed
See detailRobust Online Obstacle Detection and Tracking for Collision-free Navigation of Multirotor UAVs in Complex Environments
Wang, Min UL; Voos, Holger UL; Su, Daobilige

in 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore 18-21 November 2018 (2018)

Object detection and tracking is a challenging task, especially for unmanned aerial robots in complex environments where both static and dynamic objects are present. It is, however, essential for ensuring ... [more ▼]

Object detection and tracking is a challenging task, especially for unmanned aerial robots in complex environments where both static and dynamic objects are present. It is, however, essential for ensuring safety of the robot during navigation in such environments. In this work we present a practical online approach which is based on a 2D LIDAR. Unlike common approaches in the literature of modeling the environment as 2D or 3D occupancy grids, our approach offers a fast and robust method to represent the objects in the environment in a compact form, which is significantly more efficient in terms of both memory and computation in comparison with the former. Our approach is also capable of classifying objects into categories such as static and dynamic, and tracking dynamic objects as well as estimating their velocities with reasonable accuracy. [less ▲]

Detailed reference viewed: 32 (16 UL)