References of "Vlasov, Artyom"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailResolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.
Lucarelli, Philippe UL; Schilling, Marcel; Kreutz, Clemens et al

in Cell Systems (2017)

Upon stimulation of cells with transforming growth factor beta (TGF-beta), Smad proteins form trimeric complexes and activate a broad spectrum of target genes. It remains unresolved which of the possible ... [more ▼]

Upon stimulation of cells with transforming growth factor beta (TGF-beta), Smad proteins form trimeric complexes and activate a broad spectrum of target genes. It remains unresolved which of the possible Smad complexes are formed in cellular contexts and how these contribute to gene expression. By combining quantitative mass spectrometry with a computational selection strategy, we predict and provide experimental evidence for the three most relevant Smad complexes in the mouse hepatoma cell line Hepa1-6. Utilizing dynamic pathway modeling, we specify the contribution of each Smad complex to the expression of representative Smad target genes, and show that these contributions are conserved in human hepatoma cell lines and primary hepatocytes. We predict, based on gene expression data of patient samples, increased amounts of Smad2/3/4 proteins and Smad2 phosphorylation as hallmarks of hepatocellular carcinoma and experimentally verify this prediction. Our findings demonstrate that modeling approaches can disentangle the complexity of transcription factor complex formation and its impact on gene expression. [less ▲]

Detailed reference viewed: 61 (3 UL)
Full Text
Peer Reviewed
See detailContext-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation.
Iwamoto, Nao; D'Alessandro, Lorenza A.; Depner, Sofia et al

in Science signaling (2016), 9(413), 13

The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the ... [more ▼]

The same pathway, such as the mitogen-activated protein kinase (MAPK) pathway, can produce different cellular responses, depending on stimulus or cell type. We examined the phosphorylation dynamics of the MAPK kinase MEK and its targets extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes and the transformed keratinocyte cell line HaCaT A5 exposed to either hepatocyte growth factor or interleukin-6. By combining quantitative mass spectrometry with dynamic modeling, we elucidated network structures for the reversible threonine and tyrosine phosphorylation of ERK in both cell types. In addition to differences in the phosphorylation and dephosphorylation reactions, the HaCaT network model required two feedback mechanisms, which, as the experimental data suggested, involved the induction of the dual-specificity phosphatase DUSP6 and the scaffold paxillin. We assayed and modeled the accumulation of the double-phosphorylated and active form of ERK1/2, as well as the dynamics of the changes in the monophosphorylated forms of ERK1/2. Modeling the differences in the dynamics of the changes in the distributions of the phosphorylated forms of ERK1/2 suggested that different amounts of MEK activity triggered context-specific responses, with primary hepatocytes favoring the formation of double-phosphorylated ERK1/2 and HaCaT A5 cells that produce both the threonine-phosphorylated and the double-phosphorylated form. These differences in phosphorylation distributions explained the threshold, sensitivity, and saturation of the ERK response. We extended the findings of differential ERK phosphorylation profiles to five additional cultured cell systems and matched liver tumor and normal tissue, which revealed context-specific patterns of the various forms of phosphorylated ERK. [less ▲]

Detailed reference viewed: 83 (8 UL)