References of "Vincze, Csaba"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCharacterization of field homomorphisms through Pexiderized functional equations
Gselmann, Eszter; Kiss, Gergely UL; Vincze, Csaba

in Journal of Difference Equations and Applications (in press)

Detailed reference viewed: 21 (4 UL)
Full Text
Peer Reviewed
See detailOn functional equations characterizing derivations: methods and examples
Gselmann, Eszter; Kiss, Gergely UL; Vincze, Csaba

in Results in Mathematics (2018)

Functional equations satisfied by additive functions have a special interest not only in the theory of functional equations, but also in the theory of (commutative) algebra because the fundamental notions ... [more ▼]

Functional equations satisfied by additive functions have a special interest not only in the theory of functional equations, but also in the theory of (commutative) algebra because the fundamental notions such as derivations and automorphisms are additive functions satisfying some further functional equations as well. It is an important question that how these morphisms can be characterized among additive mappings in general. The paper contains some multivariate characterizations of higher order derivations. The univariate characterizations are given as consequences by the diagonalization of the multivariate formulas. This method allows us to refine the process of computing the solutions of univariate functional equations of the form ∑k=1nxpkfk(xqk)=0, where pk and qk (k=1,…,n) are given nonnegative integers and the unknown functions f1,…,fn:R→R are supposed to be additive on the ring R. It is illustrated by some explicit examples too. As another application of the multivariate setting we use spectral analysis and spectral synthesis in the space of the additive solutions to prove that it is spanned by differential operators. The results are uniformly based on the investigation of the multivariate version of the functional equations. [less ▲]

Detailed reference viewed: 44 (3 UL)
Full Text
Peer Reviewed
See detailThe discrete Pompeiu problem on the plane
Kiss, Gergely UL; Laczkovich, Miklós; Vincze, Csaba

in Monatshefte für Mathematik (2018)

We say that a finite subset $E$ of the Euclidean plane $\R^2$ has the discrete Pompeiu property with respect to isometries (similarities), if, whenever $f:\R^2\to \C$ is such that the sum of the values of ... [more ▼]

We say that a finite subset $E$ of the Euclidean plane $\R^2$ has the discrete Pompeiu property with respect to isometries (similarities), if, whenever $f:\R^2\to \C$ is such that the sum of the values of $f$ on any congruent (similar) copy of $E$ is zero, then $f$ is identically zero. We show that every parallelogram and every quadrangle with rational coordinates has the discrete Pompeiu property with respect to isometries. We also present a family of quadrangles depending on a continuous parameter having the same property. We investigate the weighted version of the discrete Pompeiu property as well, and show that every finite linear set with commensurable distances has the weighted discrete Pompeiu property with respect to isometries, and every finite set has the weighted discrete Pompeiu property with respect to similarities. [less ▲]

Detailed reference viewed: 51 (5 UL)
Full Text
Peer Reviewed
See detailOn spectral analysis in varieties containing the solutions of inhomogeneous linear functional equations
Kiss, Gergely UL; Vincze, Csaba

in Aequationes Mathematicae (2017)

The aim of the paper is to investigate the solutions of special inhomogeneous linear functional equations using spectral analysis in a translation invariant closed linear subspace of additive ... [more ▼]

The aim of the paper is to investigate the solutions of special inhomogeneous linear functional equations using spectral analysis in a translation invariant closed linear subspace of additive/multiadditive functions containing the restrictions of the solutions to finitely generated fields. The application of spectral analysis in some related varieties is a new and important trend in the theory of functional equations; especially they have successful applications in the case of homogeneous linear functional equations. The foundations of the theory can be found in Kiss and Varga (Aequat Math 88(1):151–162, 2014) and Kiss and Laczkovich (Aequat Math 89(2):301–328, 2015). We are going to adopt the main theoretical tools to solve some inhomogeneous problems due to Koclȩga-Kulpa and Szostok (Ann Math Sylesianae 22:27–40, 2008), see also Koclȩga-Kulpa and Szostok (Georgian Math J 16:725–736, 2009; Acta Math Hung 130(4):340–348, 2011). They are motivated by quadrature rules of approximate integration. [less ▲]

Detailed reference viewed: 43 (1 UL)
Full Text
Peer Reviewed
See detailOn spectral synthesis in varieties containing the solutions of inhomogeneous linear functional equations
Kiss, Gergely UL; Vincze, Csaba

in Aequationes Mathematicae (2017)

As a continuation of our previous work [2] the aim of the recent paper is to investigate the solutions of special inhomogeneous linear functional equations by using spectral synthesis in translation ... [more ▼]

As a continuation of our previous work [2] the aim of the recent paper is to investigate the solutions of special inhomogeneous linear functional equations by using spectral synthesis in translation invariant closed linear subspaces of additive/multiadditive functions containing the restrictions of the solutions to finitely generated fields. The idea is based on the fundamental work of [5]. Using spectral analysis in some related varieties we can prove the existence of special solutions (automorphisms) of the functional equation but spectral synthesis allows us to describe the entire space of solutions on a large class of finitely generated fields. It is spanned by the so-called exponential monomials which can be given in terms of automorphisms of CC and differential operators. We apply the general theory to some inhomogeneous problems motivated by quadrature rules of approximate integration [8], see also [7, 9]. [less ▲]

Detailed reference viewed: 38 (3 UL)
Full Text
Peer Reviewed
See detailAlgebraic methods for the solution of linear functional equations
Kiss, Gergely UL; Varga, Adrienn; Vincze, Csaba

in Acta Mathematica Hungarica (2015), 146(1), 128141

Detailed reference viewed: 53 (6 UL)