References of "Thevenin, Maxime 40021337"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPhotoluminescence studies in epitaxial CZTSe thin films
Sendler, Jan UL; Thevenin, Maxime UL; Werner, Florian UL et al

in Journal of Applied Physics (2016), 120

Detailed reference viewed: 167 (6 UL)
Full Text
Peer Reviewed
See detailHighly conductive ZnO films with high near infrared transparency
Hala, Matej UL; Fujii, Shohei; Redinger, Alex UL et al

in Progress in Photovoltaics: Research and Applications (2015)

We present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n-type window of low band gap solar cells. We demonstrate that low-voltage radio frequency ... [more ▼]

We present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n-type window of low band gap solar cells. We demonstrate that low-voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non-reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free-carrier concentration and higher free-carrier mobility than Al-doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high-temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4-based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378 mV, and a power conversion efficiency of 8.4 %. [less ▲]

Detailed reference viewed: 234 (14 UL)
Full Text
Peer Reviewed
See detailAlternative etchning for improved Cu-rich CuInSe2 solar Cells
Depredurand, Valérie UL; Bertram, Tobias UL; Thevenin, Maxime UL et al

in Materials Research Society Symposia Proceedings. Materials Research Society (2015), 1771

Detailed reference viewed: 77 (7 UL)
Full Text
Peer Reviewed
See detailThe band gap of Cu2ZnSnSe4: Effect of order-disorder
Rey, Germain UL; Redinger, Alex UL; Sendler, Jan UL et al

in Applied Physics Letters (2014), 105

Detailed reference viewed: 186 (20 UL)
Full Text
Peer Reviewed
See detailCuInSe2 semiconductor formation by laser annealing
Meadows, Helen UL; Regesch, David UL; Thevenin, Maxime UL et al

in Thin Solid Films (2014)

Detailed reference viewed: 79 (1 UL)
Full Text
Peer Reviewed
See detailThe Effect of Soft Pre-Annealing of Differently Stacked Cu-Sn-Zn Precursors on the Quality of Cu2ZnSnSe4 Absorbers
Arasimowicz, Monika UL; Thevenin, Maxime UL; Dale, Phillip UL

in Materials Research Society Symposia Proceedings. (2013), 1538

Detailed reference viewed: 115 (11 UL)