References of "Teferle, Felix Norman 50003185"
     in
Bookmark and Share    
Peer Reviewed
See detailStatic load deflection experiment on a beam for damage detection using the Deformation Area Difference Method
Erdenebat, Dolgion UL; Waldmann, Danièle UL; Teferle, Felix Norman UL

Scientific Conference (in press)

A reliable and safety infrastructure for both transport and traffic is becoming increasingly important today. The condition assessment of bridges remains difficult and new methods must be found to provide ... [more ▼]

A reliable and safety infrastructure for both transport and traffic is becoming increasingly important today. The condition assessment of bridges remains difficult and new methods must be found to provide reliable information. A meaningful in-situ assessment of bridges requires very detailed investigations which cannot be guaranteed by commonly used methods. It is known that the structural response to external loading is influenced by local damages. However, the detection of local damage depends on many factors such as environmental effects (e.g. temperature), construction layer (e.g. asphalt) and accuracy of the structural response measurement. Within the paper, a new so-called Deformation Area Difference (DAD) Method is presented. The DAD method is based on a load deflection experiment and does not require a reference measurement of initial condition. Therefore, the DAD method can be applied on existing bridges. Moreover, the DAD method uses the most modern technologies such as high precision measurement techniques and attempts to combine digital photogrammetry with drone applications. The DAD method uses information given in the curvature course from a theoretical model of the structure and compares it to real measurements. The paper shows results from a laboratory load-deflection experiment with a steel beam which has been gradually damaged at distinct positions. The load size is chosen so that the maximum deflection does not exceed the serviceability limit state. With the data obtained by the laboratory experiment, the damage degree, which can still be detected by the DAD method, is described. Furthermore, the influence of measurement accuracy on damage detection is discussed. [less ▲]

Detailed reference viewed: 27 (10 UL)
Full Text
Peer Reviewed
See detailEffect of unmodelled tidal displacements in GPS and GLONASS coordinate time series
Abraha, Kibrom Ebuy UL; Teferle, Felix Norman UL; Hunegnaw, Addisu UL et al

in Geophysical Journal International (in press)

This study demonstrates the effect of unmodelled (sub-)daily tidal displacement on GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) coordinate time series in comparison with GPS (Global ... [more ▼]

This study demonstrates the effect of unmodelled (sub-)daily tidal displacement on GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) coordinate time series in comparison with GPS (Global Positioning System). More than two propagated periodic signals appear in GPS and GLONASS coordinate time series in the presence of an unmodelled M2 /O1 tidal displacements. The propagation mechanism of Stewart et al. (2005) explains well most of the periodic signals. At a fortnightly period, an unmodeled M2 tidal displacement propagates into two long-period signals at 13.6x (x is a positive integer) and 14.76 days for GPS, while only a significant propagated periodic signal at 14.76-day is discernible for GLONASS. Similarly, significant propagated periodic signals at 13.6x and 14.19 days for GPS and only at 14.19- day for GLONASS are evident as a result of an unmodeled O1 tidal displacement. However, an unmodeled Mf (long-period) results in a strong power of similar magnitude at 13.6x-day (∼13.66-day) for both GPS and GLONASS solutions. The appearance of different periodic signals but as a result of the same unmodelled tidal displacement is attributed to the differ- ent ground repeat periods of the constellations, which is one of the factors of the propagation mechanism from Stewart et al. (2005). The latter explains the reason why the 13.6x-day fort- nightly is present only for GPS solutions. Comparing the powers of the M2 aliased periodic signals at 13.6x-day and 14.76-day from a stacked spectra over all stations, the amplitude of the former is larger than the latter by an order of magnitude. The results of this study may infer that the 13.6x-day periodic signal in GPS/GNSS (Global Navigation Satellite System) derived products of the IGS (International GNSS Service) is a joint contribution of the propagation of unmodelled (sub-)daily tidal displacements and errors at longer periods with the former ap- pearing to contribute more. We also demonstrated that significant reduction of the propagated periodic signals can be achieved from combined-system solutions. [less ▲]

Detailed reference viewed: 99 (22 UL)
Full Text
See detailTowards multiscale data fusion of high-resolution space borne and terrestrial datasets over Tristan da Cunha
Backes, Dietmar UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL et al

Poster (2018, April 10)

Ever improving low cost, lightweight and easy to use sensing technologies are enabling the capture of rich 3D Datasets to support an unprecedented range of applications in Geosciences. Especially low-cost ... [more ▼]

Ever improving low cost, lightweight and easy to use sensing technologies are enabling the capture of rich 3D Datasets to support an unprecedented range of applications in Geosciences. Especially low-cost LiDAR systems as well as optical sensors, which can be deployed from terrestrial or low altitude aerial platforms, allow the collection of large datasets without detailed expert knowledge or training. Dense pointcloud derived from these technologies provide an invaluable source to fill the gap between highly precise and accurate terrestrial topographic surveys and large area Digital Surface Models (DSMs) derived from airborne and spaceborne sensors. However, the collection of reliable 3D pointclouds in remote and hazardous locations remains to be very difficult and costly. Establishing a reliable georeference, ensuring accuracy and data quality as well as merging such rich datasets with existing or space borne mapping provide additional challenges. The presented case study investigates the data quality and integration of a heterogeneous dataset collected over the remote island of Tristan da Cunha. High-resolution 3D pointclouds derived by TLS and drone Photogrammetry are merged with space borne imagery while preserving the accurate georeference provided by Ground Control derived from geodetic observations. The volcanic island of Tristan da Cunha located in the centre of the Southern Atlantic Ocean is one of the most remote and difficult to access locations on the planet. Its remote location, rough climatic conditions and consistent cloud coverage provides exceptional challenges for terrestrial, aerial as well as space borne data acquisition. Amongst many other scientific installations, the island also hosts a continuous GNSS station observation and monitoring facilities operated by the University of Luxembourg, which provided the opportunity to conduct a local terrestrial data acquisition campaign consistent with a terrestrial ground survey, Laserscanning and an image acquisition from a low-cost drone. The highly accurate Ground Control network, observed by GNSS and total station, provides a reliable georeference. Pointclouds were acquired around the area of the harbour using a Leica P20 terrestrial Laserscanner, as well as drone Photogrammetry based on images collected by a low-cost DJI Phantom3 drone. To produce a map of the complete island a comprehensive dataset of high-resolution space borne imagery based on the Digital Globe WorldView constellation was acquired which provided high resolution mapping information. The case study presents a cross-validation of terrestrial, low altitude airborne as well as spaceborne datasets in terms coregistration, absolute georeference, scale, resolution and overall data quality. Following the evaluation a practical approach to fuse this heterogeneous dataset is applied which aims to preserve overall data quality, local resolution and accurate georeference and avoid edge artefacts. The conclusions drawn from our preliminary results provide some good practice advice for similar projects. The final topographic dataset enables mapping and monitoring of local geohazards as, e.g. coastal erosion and recent landslides thus also supporting the local population. [less ▲]

Detailed reference viewed: 58 (8 UL)
Full Text
See detailVertical Land Movements and Sea Level Changes around South Georgia Island
Teferle, Felix Norman UL; Hunegnaw, Addisu UL; Abraha, Kibrom Ebuy UL et al

Poster (2018, April 09)

South Georgia Island in the Southern Atlantic Ocean is a key location for the seismic, geomagnetic and oceanic global monitoring networks. In its sub-Antarctic location, the island is largely covered by ... [more ▼]

South Georgia Island in the Southern Atlantic Ocean is a key location for the seismic, geomagnetic and oceanic global monitoring networks. In its sub-Antarctic location, the island is largely covered by mountain glaciers which have been reported to be retreating due to climatic change. Furthermore, during past glaciation periods the island and its shelf area have been ice covered as was revealed by scarring of the sub-oceanic topography. Together with ongoing tectonics along the North Scotia Ridge, these processes have the ability to produce significant uplift on local to regional scales, affecting the measurements of the tide gauge (GLOSS ID 187) at King Edward Point (KEP). Furthermore, with its mid-ocean location, the tide gauge is of particular interest to satellite altimetry calibrations over the Southern Atlantic and Southern Oceans. With the establishment of five GNSS stations on the islands during 2013 to 2015 and the scientific analysis of these data within the global network of stations of the International GNSS Service Tide Gauge Benchmark Monitoring (TIGA) working group, it has now become possible to study present-day vertical land movements of the region and their impacts on, for example, regional sea level. Furthermore, together with four precise levelling campaigns of the KEP benchmark network in 2013, 2014 and two in 2017, it has also been possible to investigate the very local character of the vertical motions near KEP, ie. the stability of the jetty upon which the tide gauge is mounted. In this study, we will present the still preliminary results from the GNSS and levelling measurements and will discuss their impact on the sea level record from the KEP tide gauge. Our measurements show that while South Georgia Island and the area around KEP are rising, the jetty and tide gauge are subsiding, leading to a disagreement in the observed sea level change from the tide gauge and satellite altimetry. In order to improve the agreement between these sea level measurements both local and regional vertical land movements need to be monitored. [less ▲]

Detailed reference viewed: 31 (1 UL)
Full Text
Peer Reviewed
See detailThe Deformation Area Difference (DAD) method for condition assessment of reinforced structures
Erdenebat, Dolgion UL; Waldmann, Danièle UL; Scherbaum, Frank et al

in Engineering Structures (Top 10 Journal) (2018), 155

The investigation and condition assessment of bridges have a very high priority in the construction industry today. Particularly, due to the fact that many bridge structures are getting old and partly ... [more ▼]

The investigation and condition assessment of bridges have a very high priority in the construction industry today. Particularly, due to the fact that many bridge structures are getting old and partly reach the end of their useful life, the control and condition assessment of bridge structures have become very important and essential. The present research work introduces an efficient new method for condition assessment called the Deformation Area Difference (DAD) Method. This new method represents an attractive alternative to visual inspection and long-term monitoring. In this paper, the new method with its theoretical background is presented and explained by means of a laboratory experiment and some additional theoretical calculation examples. The experimental investigations have been realised on a reinforced concrete beam, which has been gradually loaded until failure. For each load step, the stiffness reduction and the apparent cracking have been monitored. High-precision measurements such as close-range photogrammetry, digital levelling and displacement sensors have been used for the determination of the deflection curve. The DAD method has been applied to identify the area of the crack pattern of the laboratory experiment. Furthermore, the method is discussed with regard to the load level and the precision of the deformation measurements. On the basis of the laboratory experiment, the applicability of the DAD method for damage detection could be proven. Furthermore, the sensitivity of the method with regard to the damage degree, the static system, the damage position and the impact of temperature variation were analysed. [less ▲]

Detailed reference viewed: 108 (47 UL)
Full Text
Peer Reviewed
See detailEvaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia
Ding, Wenwu UL; Tan, Bingfeng; Chen, Yongchang et al

in Advances in Space Research (2018)

The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of ... [more ▼]

The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, an regional RT precise positioning system in Australia is developed to evaluate the performance of GPS/BeiDou observations in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from AUSCORS at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.25 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 minutes while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution. [less ▲]

Detailed reference viewed: 63 (15 UL)
Full Text
See detailFirst Vertical Land Movement Estimates on South Georgia Island: An Impact Study on Sea Level Change from Tide Gauge and Altimetry Measurements
Teferle, Felix Norman UL; Hunegnaw, Addisu UL; Abraha, Kibrom Ebuy UL et al

Poster (2017, December 11)

South Georgia Island in the Southern Atlantic Ocean has been a key location for the seismic, geomagnetic and oceanic global monitoring networks. However, no permanent geodetic monitoring station had been ... [more ▼]

South Georgia Island in the Southern Atlantic Ocean has been a key location for the seismic, geomagnetic and oceanic global monitoring networks. However, no permanent geodetic monitoring station had been established there despite the lack of observations from this region within, for example, the International GNSS Service (IGS) network of Global Navigation Satellite System (GNSS) stations. Then, in 2013 the King Edward Point (KEP) Geodetic Observatory was established with a focus on sea level studies and in support of general geoscience applications. Currently, this observatory located roughly half-way along the main island and along its northern coastline, consists of two GNSS stations (KEPA and KRSA) with local benchmark networks, allowing the height determinations from the GNSS antennas to be transferred to the KEP tide gauge (GLOSS ID 187) and forming a height reference within the International Terrestrial Reference Frame. In late 2014, three additional GNSS stations (SG01, SG02 and SG03) were established, all on small islands at the perimeter of the main island. Together the stations provide the best possible opportunity to study various geophysical processes in the region. With the GNSS-derived position time series partly reaching over 4.5 years in length, it has become possible to provide first estimates of vertical land movements for the island and KEP with its surrounding area. Together with four precise levelling campaigns of the benchmark network in 2013, 2014 and two in 2017, it has also been possible to investigate the very local character of the vertical motions, ie. the stability of the jetty upon which the tide gauge is mounted. Our measurements show that while South Georgia Island and the area around KEP are rising, the jetty and tide gauge are subsiding. In this study, we will present the preliminary results from the GNSS and levelling measurements and will discuss their impact on the sea level record from the KEP tide gauge which is ideally situated in a mid-ocean location for satellite altimetry calibration over the Southern Atlantic and Southern Oceans. [less ▲]

Detailed reference viewed: 71 (10 UL)
Full Text
Peer Reviewed
See detailOn the combined effect of periodic signals and colored noise on velocity uncertainties
Klos, Anna; Olivares Pulido, German UL; Teferle, Felix Norman UL et al

in GPS Solutions (2017)

The velocity estimates and their uncertainties derived from position time series of Global Navigation Satellite System stations are affected by seasonal signals and their harmonics, and the statistical ... [more ▼]

The velocity estimates and their uncertainties derived from position time series of Global Navigation Satellite System stations are affected by seasonal signals and their harmonics, and the statistical properties, i.e., the stochastic noise, contained in the series. If the deterministic model in the form of linear trend and periodic terms is not accurate enough to describe the time series, it will alter the stochastic model, and the resulting effect on the velocity uncertainties can be perceived as a result of a misfit of the deterministic model. The effects of insufficiently modeled seasonal signals will propagate into the stochastic model and falsify the results of the noise analysis, in addition to velocity estimates and their uncertainties. We provide the general dilution of precision (GDP) of velocity uncertainties as the ratio of uncertainties of velocities determined from to two different deterministic models while accounting for stochastic noise at the same time. In this newly defined GDP, the first deterministic model includes a linear trend, while the second one includes a linear trend and seasonal signals. These two are tested with the assumption of white noise only as well as the combinations of power-law and white noise in the data. The more seasonal terms are added to the series, the more biased the velocity uncertainties become. With increasing time span of observations, the assumption of seasonal signals becomes less important, and the power-law character of the residuals starts to play a crucial role in the determined velocity uncertainties. With reference frame and sea level applications in mind, we argue that 7 and 9 years of continuous observations is the threshold for white and flicker noise, respectively, while 17 years are required for random-walk to decrease GDP below 5% and to omit periodic oscillations in the GNSS-derived time series taking only the noise model into consideration. [less ▲]

Detailed reference viewed: 24 (1 UL)
Full Text
Peer Reviewed
See detailLaboratory experiment for damage assessment using the DAD-method
Erdenebat, Dolgion UL; Waldmann, Danièle UL; Teferle, Felix Norman UL

in Conference proceedings SMAR 2017 (2017, September)

In the following, a new analytical method, the Deformation Area Difference (DAD) method for damage assessment of bridge structures is applied using experimental test results of a statically loaded beam ... [more ▼]

In the following, a new analytical method, the Deformation Area Difference (DAD) method for damage assessment of bridge structures is applied using experimental test results of a statically loaded beam. An essential prerequisite for the application of this method is a high precise measurement of the deflection line. In this paper, the results from a laboratory experiment using modern measurement techniques such as photogrammetry and displacement sensors are discussed. A reinforced concrete beam is stepwise loaded until reaching the ultimate limit state. The DAD-method is applied to the resulting data from the measurements and the outcome is discussed for further optimisation of the method. In principle, the measured deflection line of the beam contains already essential information on discontinuities which occur due to cracking. These entries are processed and visualised using the DAD-method. This study shows that a high accuracy of the measurement techniques in combination with the DAD-method can become an effective tool for damage detection. [less ▲]

Detailed reference viewed: 68 (14 UL)
Full Text
See detailA Global Vertical Land Movement Data Set from a Combination of Global Navigation Satellite System Solutions
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL et al

Poster (2017, July 13)

Coastal sea-level measurements by tide gauges provide the longest instrumental records of sea-levels with some stretching from the 19th century to present. The derived mean sea-level (MSL) records provide ... [more ▼]

Coastal sea-level measurements by tide gauges provide the longest instrumental records of sea-levels with some stretching from the 19th century to present. The derived mean sea-level (MSL) records provide sea-level relative to a nearby tide gauge benchmark (TGBM), which allows for the continuation of this record in time after, for example, equipment modifications. Any changes in the benchmark levels induced by vertical land movements (VLM) affect the MSL records and hence the computed sea-levels. In the past, MSL records affected by VLM were often excluded from further analyses or the VLM were modelled using numerical models of the glacial isostatic adjustment (GIA) process. Over the last two decades Global Navigation Satellite System (GNSS), in particular Global Positioning System (GPS), measurements at or close to tide gauges and the development of the associated processing strategies, have made it possible to obtain estimates of VLM in a geocentric reference system, such as the International Terrestrial Reference Frame release 2008 (ITRF2008) that approach the required accuracy for sea-level studies. Furthermore, the GPS-derived VLM estimates have been shown to improve estimates of sea-level change compared to those using the aforementioned GIA models as these models cannot predict local subsidence or uplift. The International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Working Group has recently re-processed the global GNSS data set from its archive (1000+ stations for 1995-2014) to provide VLM estimates tuned for the sea-level community. To achieve this, five TIGA Analysis Centers (TAC) contributed their reprocessed global GPS network solutions to the WG, all employing the latest bias models and processing strategies in accordance with the second re-processing compaign (repro2) of the IGS. These individual solutions were then combined by the TIGA Combination Center (TCC) to produce, for the first time, a TIGA combined solution (Release 0.99). This combined solution allows an evaluation of each individual TAC solution while also providing a means to gauge the quality and reliability of the combined solution, which is generally regarded as superior to the individual TAC solutions. Using time series analysis methods, estimates of VLM can then be derived from the daily position estimates, which are sub-sequentially employed to investigate coastal sea-levels. In this study, we show results from the evaluation of the relevant solutions, provide an evaluation of the TIGA VLM estimates and give examples of their impact on sea-level estimates for selected tide gauges from around the world. The TAC and TIGA combined solutions, as well as the derived VLM data sets are available from the IGS TIGA WG and will be accessible through SONEL (www.sonel.org) in the near future. [less ▲]

Detailed reference viewed: 128 (15 UL)
Full Text
See detailOn the Scientific Applications of IGS Products: An Assessment of the Reprocessed TIGA Solutions and Combined Products
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL et al

Scientific Conference (2017, July 03)

Global sea levels have risen since the early 19th century and this rise is likely to accelerate through the 21st century and beyond. Much of the past information on sea level rise stems from the ... [more ▼]

Global sea levels have risen since the early 19th century and this rise is likely to accelerate through the 21st century and beyond. Much of the past information on sea level rise stems from the instrumental records of tide gauges, which measure changes in sea level relative to a tide gauge benchmark (TGBM) situated on land. In order to assess regional or global sea level changes the vertical land movements (VLM) at the tide gauge and its TGBM need to be monitored. GNSS, in particular GPS, has been recognized as one space-geodetic technique to provide highly accurate estimates of VLM in a geocentric reference frame for tide gauges and their TGBMs. As it turned out, this scientific application of GNSS poses the most stringent requirements on the consistency and homogeneity on the data, processing strategies, satellite products, bias models and reference frames used in the analysis of GNSS measurements. Under the umbrella of the International GNSS Service (IGS), the Tide Gauge Benchmark Monitoring (TIGA) Working Group (WG) has the objective to provide highly-accurate positions and VLM estimates for a global network of tide gauges contributing to the Global Sea Level Observing System (GLOSS) and the Permanent Service for Mean Sea Level (PSMSL). As such TIGA forms an important contribution of the IGS to the goals of the Global Geodetic Observing System (GGOS), the Global Climate Observing System (GCOS) and the World Climate Research Programme (WCRP). To achieve the TIGA-WG objectives, five TIGA Analysis Centers (TACs) contributed re-processed global GPS network solutions to TIGA, employing the latest bias models and processing strategies in accordance with the second IGS re-processing campaign (repro2). These individual TAC solutions were then used to compute the combined products by the TIGA Combination Centre (TCC) at the University of Luxembourg using an in-house modified version of the CATREF software package. In this study, we present and internally evaluate the individual TAC and TIGA combined products. We investigate station positions, scale and origin biases, including their frequency content. We also externally evaluate the combined products, particularly the VLM estimates, using solutions from the ITRF2008, ITRF2014 and the glacial isostatic adjustment model ICE-6G (VM5a). Finally, we draw some conclusions on the recent advances and remaining limitations of the various IGS products required for the challenging application to sea level studies. [less ▲]

Detailed reference viewed: 131 (10 UL)
Full Text
See detailEvaluation of ERA-Interim for tropospheric delay and water vapour estimation in different climate zones using ground-based GNSS observations
Ahmed, Furqan; Hunegnaw, Addisu UL; Teferle, Felix Norman UL et al

Poster (2017, April 27)

Tropospheric delay and integrated water vapour (IWV) derived from climate reanalysis models, such as that of the European Centre for Medium-range Weather Forecasts (ECMWF) namely the ECMWF ReAnalysis ... [more ▼]

Tropospheric delay and integrated water vapour (IWV) derived from climate reanalysis models, such as that of the European Centre for Medium-range Weather Forecasts (ECMWF) namely the ECMWF ReAnalysis-Interim (ERA-Interim), are widely used in many geodetic and atmospheric applications. Therefore, it is of interest to assess the quality of these reanalysis products using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability make it possible to validate the zenith total delay (ZTD) and IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, a 5-year long homogeneously reprocessed GNSS data set based on double differenced positioning strategy and containing over 400 globally distributed ground-based GNSS stations has been used as a reference to validate the ZTD estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. It has been studied how the difference between the ERA-Interim ZTD and the GNSS-derived ZTD varies with respect to the different climate zones as well as the topographic variations in a particular climate zone. Periodicity in the ZTD residuals in different climate zones has been analyzed. Furthermore, the variation of the ZTD differences with respect to latitude has been presented. Finally, for one GNSS station in each of the 25 climate zones, IWV derived from ERA-Interim has been compared to the IWV derived using GNSS observations. [less ▲]

Detailed reference viewed: 126 (10 UL)
Full Text
See detailA New Global Vertical Land Movement Data Set from the TIGA Combined
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL

Poster (2017, April 23)

Globally averaged sea level has been estimated from the network of tide gauges installed around the world since the 19th century. These mean sea level (MSL) records provide sea level relative to a nearby ... [more ▼]

Globally averaged sea level has been estimated from the network of tide gauges installed around the world since the 19th century. These mean sea level (MSL) records provide sea level relative to a nearby tide gauge benchmark (TGBM), which allows for the continuation of the instrumental record in time. Any changes in the benchmark levels, induced by vertical land movements (VLM) affect the MSL records and hence sea level estimates. Over the last two decades sea level has also been observed using satellite altimeters. While the satellite observations are globally more homogeneous providing a picture of sea level not confined to coastlines, they require the VLM-corrected MSL records for the bias calibration of instrumental drifts. Without this calibration altimeter instruments from different missions cannot be combined. GPS has made it possible to obtain highly accurate estimates of VLM in a geocentric reference frame for stations at or close to tide gauges. Under the umbrella of the International GNSS Service (IGS), the Tide Gauge Benchmark Monitoring (TIGA) Working Group (WG) has been established to apply the expertise of the GNSS community to solving issues related to the accuracy and reliability of the vertical component to provide estimates of VLM in a well-defined global reference frame. To achieve this objective, five TIGA Analysis Centers (TACs) contributed re-processed global GPS network solutions to TIGA, employing the latest bias models and processing strategies in accordance with the second re-processing campaign (repro2) of the IGS. These solutions include those of the British Isles continuous GNSS Facility – University of Luxembourg consortium (BLT), the German Research Centre for Geosciences (GFZ) Potsdam, the German Geodetic Research Institute (DGF) at the Technical University of Munich, Geoscience Australia (AUT) and the University of La Rochelle (ULR). In this study we present to the sea level community an evaluation of the VLM estimates from the first combined solution from the IGS TIGA WG. The TAC solutions include more than 700 stations and span the common period 1995-2014. The combined solution was computed by the TIGA Combination Centre (TCC) at the University of Luxembourg, which used the Combination and Analysis of Terrestrial Reference Frame (CATREF) software package for this purpose. This first solution forms Release 1.0 and further releases will be made available after further reprocessing campaigns. We evaluate the combined solution internally using the TAC solutions and externally using solutions from the IGS and the ITRF2008. The derived VLM estimates have undergone an initial evaluation and should be considered as the primary TIGA product for the sea level community to correct MSL records for land level changes [less ▲]

Detailed reference viewed: 175 (15 UL)
Full Text
See detailNoise characteristics in Zenith Total Delay from homogeneously reprocessed GPS time series
Klos, Anna; Hunegnaw, Addisu UL; Teferle, Felix Norman UL et al

Scientific Conference (2017, February 22)

Zenith Total Delay (ZTD) time series, derived from the re-processing of Global Positioning System (GPS) data, provide valuable information for the evaluation of global atmospheric reanalysis products such ... [more ▼]

Zenith Total Delay (ZTD) time series, derived from the re-processing of Global Positioning System (GPS) data, provide valuable information for the evaluation of global atmospheric reanalysis products such as ERA-Interim. Identifying the correct noise characteristics in the ZTD time series is an important step to assess the ’true’ magnitude of ZTD trend uncertainties. The ZTD residual time series for 1995-2015 are generated from our homogeneously re-processed and homogenized GPS time series from over 700 globally distributed stations classified into five major climate zones. The annual peak of ZTD data ranges between 10 and 150 mm with the smallest values for the polar and Alpine zone. The amplitudes of daily curve fall between 0 and 12 mm with the greatest variations for the dry zone. The autoregressive process of fourth order plus white noise model were found to be optimal for ZTD series. The tropical zone has the largest amplitude of autoregressive noise (9.59 mm) and the greatest amplitudes of white noise (13.00 mm). All climate zones have similar median coefficients of AR(1) (0.80±0.05) with a minimum for polar and Alpine, which has the highest coefficients of AR(2) (0.27±0.01) and AR(3) (0.11±0.01) and clearly different from the other zones considered. We show that 53 of 120 examined trends became insignificant, when the optimum noise model was employed, compared to 11 insignificant trends for pure white noise. The uncertainty of the ZTD trends may be underestimated by a factor of 3 to 12 compared to the white noise only assumption. [less ▲]

Detailed reference viewed: 120 (7 UL)
Full Text
See detailAn Evaluaton of Real-Time Troposphere Products Based on mult-GNSS Precise Point Posi)oning
Ding, Wenwu; Teferle, Felix Norman UL; Kazmierski, Kamil et al

Scientific Conference (2017, February 21)

When employing observations from multiple Global Navigation Satellite System (GNSS) the performance of real-time (RT) GNSS meteorology can be improved. In this paper, we describe an operational RT system ... [more ▼]

When employing observations from multiple Global Navigation Satellite System (GNSS) the performance of real-time (RT) GNSS meteorology can be improved. In this paper, we describe an operational RT system for extracting zenith tropospheric delay (ZTD) using a modified version of the PPP-wizard. Multi-GNSS, including GPS, GLONASS and Galileo, observation streams are processed using a RT PPP strategy based on RT satellite orbit/clock products from CNES. A continuous experiment for 30 days is conducted, in which the RT observation streams of 20 globally distributed stations are processed. The initialization time and accuracy of the RT troposphere products using single/multi-system observations are evaluated. The effect of RT PPP ambiguity resolution is also evaluated. The results reveal that the RT troposphere products based on single system observations can fulfill the requirements of meteorological application, in which the GPS-only solution is better than the GLONASS-only solution in both initialization and accuracy. The performance can also be improved by applying RT PPP ambiguity resolution and utilizing multi-GNSS observations. Specifically, we notice that the ambiguity resolution is more effective in improving the accuracy, whereas the initialization process can be better accelerated by multi-GNSS observations. Combining all systems, RT troposphere products with an average accuracy of about 8 mm in ZTD can be achieved after an initialization process of approximately 9 minutes, which supports the application of multi-GNSS observations and ambiguity resolution for RT meteorological applications. [less ▲]

Detailed reference viewed: 132 (4 UL)
Full Text
Peer Reviewed
See detailAn evaluation of real-time troposphere estimation based on GNSS Precise Point Positioning
Ding, Wenwu; Teferle, Felix Norman UL; Kazmierski, Kamil et al

in Journal of Geophysical Research: Atmospheres (2017), 122(5), 2779--2790

It is anticipated that the performance of real-time (RT) GNSS meteorology can be further improved by incorporating observations from multiple Global Navigation Satellite System (GNSS), including GPS ... [more ▼]

It is anticipated that the performance of real-time (RT) GNSS meteorology can be further improved by incorporating observations from multiple Global Navigation Satellite System (GNSS), including GPS, GLONASS, Galileo, and BeiDou. In this paper, an operational RT system for extracting zenith troposphere delay (ZTD) using a modified version of the Precise Point Positioning With Integer and Zero-difference Ambiguity Resolution Demonstrator (PPP-WIZARD) was established. GNSS, including GPS, GLONASS, and Galileo, observation streams were processed using RT Precise Point Positioning (PPP) strategy based on RT satellite orbit/clock products from the Centre National d'Etudes Spatiales. An experiment covering 30 days was conducted, in which the observation streams of 20 globally distributed stations were processed. The initialization time and accuracy of the RT troposphere results using single-system and multisystem observations were evaluated. The effect of PPP ambiguity resolution was also evaluated. Results reveal that RT troposphere estimates based on single-system observations can both be applied in weather nowcasting, in which the GPS-only solution is better than the GLONASS-only solution. The performance can also be improved by PPP ambiguity resolution and utilizing GNSS observations. Specifically, we notice that ambiguity resolution is more effective in improving the accuracy of ZTD, whereas the initialization process can be better accelerated by GNSS observations. Combining all techniques, the RT troposphere results with an average accuracy of about 8 mm in ZTD can be achieved after an initialization process of approximately 8.5 min, which demonstrates superior results for applying GNSS observations and ambiguity resolution for RT meteorological applications. [less ▲]

Detailed reference viewed: 50 (7 UL)
Full Text
Peer Reviewed
See detailOptimum stochastic modeling for GNSS tropospheric delay estimation in real-time
Hadas, Tomasz; Teferle, Felix Norman UL; Kazmierski, Kamil et al

in GPS Solutions (2016)

In GNSS data processing, the station height, receiver clock and tropospheric delay (ZTD) are highly correlated to each other. Although the zenith hydrostatic delay of the troposphere can be provided with ... [more ▼]

In GNSS data processing, the station height, receiver clock and tropospheric delay (ZTD) are highly correlated to each other. Although the zenith hydrostatic delay of the troposphere can be provided with sufficient accuracy, zenith wet delay (ZWD) has to be estimated, which is usually done in a random walk process. Since ZWD temporal variation depends on the water vapor content in the atmosphere, it seems to be reasonable that ZWD constraints in GNSS processing should be geographically and/or time dependent. We propose to take benefit from numerical weather prediction models to define optimum random walk process noise. In the first approach, we used archived VMF1-G data to calculate a grid of yearly and monthly means of the difference of ZWD between two consecutive epochs divided by the root square of the time lapsed, which can be considered as a random walk process noise. Alternatively, we used the Global Forecast System model from National Centres for Environmental Prediction to calculate random walk process noise dynamically in real-time. We performed two representative experimental campaigns with 20 globally distributed International GNSS Service (IGS) stations and compared real-time ZTD estimates with the official ZTD product from the IGS. With both our approaches, we obtained an improvement of up to 10% in accuracy of the ZTD estimates compared to any uniformly fixed random walk process noise applied for all stations. [less ▲]

Detailed reference viewed: 62 (1 UL)
Full Text
See detailOn the Impact of Multi-GNSS Solutions on Satellite Products and Positioning
Abraha, Kibrom Ebuy UL; Teferle, Felix Norman UL; Hunegnaw, Addisu UL et al

Poster (2016, December 12)

In Global Navigation Satellite System (GNSS) coordinate time series unrecognised errors and un-modelled (periodic) effects may bias non-linear motions induced by geophysical signals. Those spurious ... [more ▼]

In Global Navigation Satellite System (GNSS) coordinate time series unrecognised errors and un-modelled (periodic) effects may bias non-linear motions induced by geophysical signals. Those spurious signals can be caused either due to un-modelled long periodic signals or propagation of sub-daily signals into the time series. Understanding and mitigating these errors is vital to reduce biases and on revealing subtle geophysical signals. Mostly, the spurious signals are caused by unmodelled errors which occur due to the draconitic years, satellite ground repeats and absorption into resonant GNSS orbits. Accordingly, different features can be observed in GNSS-derived products from different single-GNSS or combined-GNSS solutions. To assess the nature of periodic signals on station coordinate time series Precise Point Positioning (PPP) solutions are generated using the Bernese GNSS Software V5.2. The solutions consider only GPS, only GLONASS or combined GPS+GLONASS (GNSS) observations. We assess the periodic signals of station coordinates computed using the combined International GNSS Service (IGS) and four of its Analysis Centers (ACs) products. [less ▲]

Detailed reference viewed: 144 (25 UL)