References of "Superti-Furga, Giulio"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMMP13 mutations are the cause of recessive metaphyseal dysplasia, Spahr type
Le Béchec, Antony UL; Bonafe, Luisa; Liang, Jinlong et al

in American Journal of Medical Genetics. Part A (2014), 164(5), 1175-1179

Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and ... [more ▼]

Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and moderate short stature. Its molecular basis and nosologic status remained unknown. We followed up on those individuals and diagnosed the disorder in an additional member of the family. We used exome sequencing to ascertain the underlying mutation and explored its consequences on three-dimensional models of the affected protein. The MDST phenotype is associated with moderate short stature and knee pain in adults, while extra-skeletal complications are not observed. The sequencing showed that MDST segregated with a c.619T>G single nucleotide transversion in MMP13. The predicted non-conservative amino acid substitution, p. Trp207Gly, disrupts a crucial hydrogen bond in the calcium-binding region of the catalytic domain of the matrix metalloproteinase, MMP13. The MDST phenotype is associated with recessive MMP13 mutations, confirming the importance of this metalloproteinase in the metaphyseal growth plate. Dominant MMP13 mutations have been associated with metaphyseal anadysplasia (OMIM 602111), while a single child homozygous for a MMP13 mutation had been previously diagnosed as "recessive metaphyseal anadysplasia," that we conclude is the same nosologic entity as MDST. Molecular confirmation of MDST allows distinction of it from dominant conditions (e.g., metaphyseal dysplasia, Schmid type; OMIM # 156500) and from more severe multi-system conditions (such as cartilage-hair hypoplasia; OMIM # 250250) and to give precise recurrence risks and prognosis. [less ▲]

Detailed reference viewed: 62 (1 UL)
Full Text
Peer Reviewed
See detailFAM111A mutations result in hypoparathyroidism and impaired skeletal development
Unger, Sheila; Górna, Maria W.; Le Béchec, Antony UL et al

in American Journal of Human Genetics (2013), 92(6), 990-995

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and ... [more ▼]

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth. © 2013 The American Society of Human Genetics. [less ▲]

Detailed reference viewed: 80 (1 UL)
Peer Reviewed
See detailFunctional organization of the yeast proteome by systematic analysis of protein complexes.
Gavin, Anne-Claude; Bosche, Markus; Krause, Roland UL et al

in Nature (2002), 415(6868), 141-7

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized ... [more ▼]

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery. [less ▲]

Detailed reference viewed: 195 (3 UL)