References of "Silani, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMolecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture
Talebi, H.; Silani, M.; Bordas, Stéphane UL et al

in International Journal for Multiscale Computational Engineering (2013), 11(6), 527-541

We propose a method to couple a three-dimensional continuum domain to a molecular dynamics domain to simulate propagating cracks in dynamics. The continuum domain is treated by an extended finite element ... [more ▼]

We propose a method to couple a three-dimensional continuum domain to a molecular dynamics domain to simulate propagating cracks in dynamics. The continuum domain is treated by an extended finite element method to handle the discontinuities. The coupling is based on the bridging domain method, which blends the continuum and atomistic energies. The Lennard-Jones potential is used to model the interactions in the atomistic domain, and the Cauchy-Born rule is used to compute the material behavior in the continuum domain. To our knowledge, it is the first time that a three dimensional extended bridging domain method is reported. To show the suitability of the proposed method, a threedimensional crack problem with an atomistic region around the crack front is solved. The results show that the method is capable of handling crack propagation and dislocation nucleation. © 2013 by Begell House, Inc. [less ▲]

Detailed reference viewed: 142 (0 UL)
Full Text
Peer Reviewed
See detailA computational library for multiscale modeling of material failure
Talebi, H.; Silani, M.; Bordas, Stéphane UL et al

in Computational Mechanics (2013)

We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran ... [more ▼]

We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation. © 2013 Springer-Verlag Berlin Heidelberg. [less ▲]

Detailed reference viewed: 502 (4 UL)