References of "Sharma, Manu"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailReply: No evidence for rare TRAP1 mutations influencing the risk of idiopathic Parkinson’s disease
Fitzgerald, Julia C.; Zimprich, Alexander; Bobbili, Dheeraj Reddy UL et al

in Brain : A Journal of Neurology (2018)

Sir, In their letter in this issue, Gaare and colleagues (2018) state that TRAP1 may not be a Parkinson’s disease gene because of lack of genetic association. In response, we welcome their data analyses ... [more ▼]

Sir, In their letter in this issue, Gaare and colleagues (2018) state that TRAP1 may not be a Parkinson’s disease gene because of lack of genetic association. In response, we welcome their data analyses and we welcome any further genetic analyses of TRAP1 variants in additional Parkinson’s disease genetic datasets, including the reanalysis of open access datasets such as the Parkinson’s Progressive Markers Initiative (PPMI). Our point of view is that TRAP1 is an interesting effector protein that our study unequivocally showed is relevant to Parkinson’s disease signaling in the context of mitochondrial regulation. Furthermore, the overall contribution of TRAP1 genetic variants to Parkinson’s disease was not the focus of our recent paper in Brain (Fitzgerald et al., 2017). [less ▲]

Detailed reference viewed: 151 (23 UL)
Full Text
Peer Reviewed
See detailMetformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease
Fitzgerald, Julia C.; Zimprich, Alexander; Carvajal-Berrio, Daniel A. et al

in Brain : A Journal of Neurology (2017), 140(9), 2444-2459

The mitochondrial proteins TRAP1 and HtrA2 have previously been shown to be phosphorylated in the presence of the Parkinson’s disease kinase PINK1 but the downstream signaling is unclear. HtrA2 and PINK1 ... [more ▼]

The mitochondrial proteins TRAP1 and HtrA2 have previously been shown to be phosphorylated in the presence of the Parkinson’s disease kinase PINK1 but the downstream signaling is unclear. HtrA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HtrA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HtrA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HtrA2 and PINK1. HtrA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HtrA2 protease activity. Following genetic screening of Parkinson’s disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson’s disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HtrA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson’s disease and provide new prospects for targeted therapies. [less ▲]

Detailed reference viewed: 217 (34 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 230 (64 UL)
Full Text
Peer Reviewed
See detailEvaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study.
Wang, Lisa; Heckman, Michael G.; Aasly, Jan O. et al

in Neurobiology of aging (2017), 49

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed ... [more ▼]

A recent study MacLeod et al. has shown that an interaction between variants at the LRRK2 and PARK16 loci influences risk of development of Parkinson's disease (PD). Our study examines the proposed interaction between LRRK2 and PARK16 variants in modifying PD risk using a large multicenter series of PD patients (7715) and controls (8261) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Our data does not support a strong direct interaction between LRRK2 and PARK16 variants; however, given the role of retromer and lysosomal pathways in PD, further studies are warranted. [less ▲]

Detailed reference viewed: 54 (2 UL)
Full Text
Peer Reviewed
See detailMutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease
Wüst, Richard; Maurer, Brigitte; Hauser, Kathrin et al

in Neurobiology of Aging (2016), 39

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known ... [more ▼]

Presenilin-associated rhomboid-like (PARL), a serine protease located in the inner mitochondrial membrane, has been shown to genetically interact and process PTEN-induced putative kinase a protein known for its critical role in mitochondrial homeostasis and early-onset forms of Parkinson’s disease (PD). The identification of a PD-associated variant in the PARL gene (p.Ser77Asn) led us to assess the relevance of PARL for PD pathogenesis using a mutation screening of the coding sequences and adjacent intronic sequences. We investigated 3 single nucleotide polymorphisms (rs3792589, rs13091, and rs3732581), a synonymous base substitution (Leu79Leu) and the previously described p.Ser77Asn mutation, which were subsequently screened in more than 2000 patients and controls. Not detecting the p.Ser77Asn mutation in our cohort, nor a robust association between variations in the PARL gene and PD, the role of disease causing genetic variants in the PARL gene could not be further substantiated in our samples. Our findings indicate that PARL mutations are a rare cause of PD and genetic variants are neither strong nor common risk factors in PD. [less ▲]

Detailed reference viewed: 130 (30 UL)
Full Text
Peer Reviewed
See detailProtective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants.
Heckman, Michael G.; Elbaz, Alexis; Soto-Ortolaza, Alexandra I. et al

in Neurobiology of aging (2014), 35(1), 2665-14

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼]

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲]

Detailed reference viewed: 95 (6 UL)
Full Text
Peer Reviewed
See detailGlobal investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease.
Theuns, Jessie; Verstraeten, Aline; Sleegers, Kristel et al

in Neurology (2014)

OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO ... [more ▼]

OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort. METHODS: C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia. RESULTS: A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low. CONCLUSIONS: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. [less ▲]

Detailed reference viewed: 82 (7 UL)
Full Text
Peer Reviewed
See detailMutant COQ2 in multiple-system atrophy.
Sharma, Manu; Wenning, Gregor; Krüger, Rejko UL

in The New England journal of medicine (2014), 371(1), 80-1

Detailed reference viewed: 125 (13 UL)
Full Text
Peer Reviewed
See detailFrom genome-wide association studies to next-generation sequencing: lessons from the past and planning for the future.
Sharma, Manu; Krüger, Rejko UL; Gasser, Thomas

in JAMA neurology (2014), 71(1), 5-6

Detailed reference viewed: 83 (13 UL)
Full Text
Peer Reviewed
See detailPopulation-specific frequencies for LRRK2 susceptibility variants in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium.
Heckman, Michael G.; Soto-Ortolaza, Alexandra I.; Aasly, Jan O. et al

in Movement disorders : official journal of the Movement Disorder Society (2013), 28(12), 1740-4

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease ... [more ▼]

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. [less ▲]

Detailed reference viewed: 78 (0 UL)
Full Text
Peer Reviewed
See detailA multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants.
Sharma, Manu; Ioannidis, John P. A.; Aasly, Jan O. et al

in Journal of medical genetics (2012), 49(11), 721-6

BACKGROUND: Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense ... [more ▼]

BACKGROUND: Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive. METHODS AND RESULTS: We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort. CONCLUSIONS: Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide. [less ▲]

Detailed reference viewed: 61 (0 UL)
Full Text
Peer Reviewed
See detailLarge-scale replication and heterogeneity in Parkinson disease genetic loci.
Sharma, Manu; Ioannidis, John P. A.; Aasly, Jan O. et al

in Neurology (2012), 79(7), 659-67

OBJECTIVE: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The ... [more ▼]

OBJECTIVE: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. RESULTS: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. CONCLUSION: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. [less ▲]

Detailed reference viewed: 67 (0 UL)
Full Text
Peer Reviewed
See detailLRRK2: Understanding the role of common and rare variants in Parkinson's disease.
Sharma, Manu; Krüger, Rejko UL; Gasser, Thomas

in Movement disorders : official journal of the Movement Disorder Society (2012), 27(4), 475

Detailed reference viewed: 58 (1 UL)
Full Text
Peer Reviewed
See detailIndependent and joint effects of the MAPT and SNCA genes in Parkinson disease.
Elbaz, Alexis; Ross, Owen A.; Ioannidis, John P. A. et al

in Annals of neurology (2011), 69(5), 778-92

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta ... [more ▼]

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. [less ▲]

Detailed reference viewed: 70 (0 UL)
Full Text
Peer Reviewed
See detailRole of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease.
Sharma, Manu; Maraganore, Demetrius M.; Ioannidis, John P. A. et al

in Neurobiology of aging (2011), 32(11), 21081-5

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for ... [more ▼]

Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for PARK3 locus. A number of studies yielded association of the PARK3 locus with PD, and SPR knockout mice were shown to display parkinsonian features. To evaluate the role of SPR gene polymorphisms in diverse populations in PD, we performed collaborative analyses in the Genetic Epidemiology of Parkinson Disease (GEO-PD) Consortium. A total of 5 single nucleotide polymorphisms (3 in the promoter region and 2 in the 3' untranslated region [UTR]) were genotyped. Fixed as well as random effect models were used to provide summary risk estimates of SPR variants. A total of 19 sites provided data for 6547 cases and 9321 controls. Overall odds ratio estimates varied from 0.92 to 1.01. No overall association with the SPR gene using either fixed effect or random effect model was observed in the studied population. I(2) Metric varied from 0% to 36.2%. There was some evidence for an association for participants of North European/Scandinavian descent with the strongest signal for rs1876487 (odds ratio = 0.82; p value = 0.003). Interestingly, families which were used to map the PARK3 locus, have Scandinavian ancestry suggesting a founder effect. In conclusion, this large association study for the SPR gene revealed no association for PD worldwide. However, taking the initial mapping of the PARK3 into account, the role of a population-specific effect warrants consideration in future studies. [less ▲]

Detailed reference viewed: 70 (0 UL)
Full Text
Peer Reviewed
See detailAssociation of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study.
Ross, Owen A.; Soto-Ortolaza, Alexandra I.; Heckman, Michael G. et al

in Lancet neurology (2011), 10(10), 898-908

BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in ... [more ▼]

BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS: LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS: 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 1.33-15.09; p=0.012). INTERPRETATION: The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING: Michael J Fox Foundation and National Institutes of Health. [less ▲]

Detailed reference viewed: 63 (0 UL)
Full Text
Peer Reviewed
See detailA large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease.
Krüger, Rejko UL; Sharma, Manu; Riess, Olaf et al

in Neurobiology of aging (2011), 32(3), 5489-18

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the ... [more ▼]

High-profile studies have provided conflicting results regarding the involvement of the Omi/HtrA2 gene in Parkinson's disease (PD) susceptibility. Therefore, we performed a large-scale analysis of the association of common Omi/HtrA2 variants in the Genetic Epidemiology of Parkinson's disease (GEO-PD) consortium. GEO-PD sites provided clinical and genetic data including affection status, gender, ethnicity, age at study, age at examination (all subjects); age at onset and family history of PD (patients). Genotyping was performed for the five most informative SNPs spanning the Omi/HtrA2 gene in approximately 2-3 kb intervals (rs10779958, rs2231250, rs72470544, rs1183739, rs2241028). Fixed as well as random effect models were used to provide summary risk estimates of Omi/HtrA2 variants. The 20 GEO-PD sites provided data for 6378 cases and 8880 controls. No overall significant associations for the five Omi/HtrA2 SNPs and PD were observed using either fixed effect or random effect models. The summary odds ratios ranged between 0.98 and 1.08 and the estimates of between-study heterogeneity were not large (non-significant Q statistics for all 5 SNPs; I(2) estimates 0-28%). Trends for association were seen for participants of Scandinavian descent for rs2241028 (OR 1.41, p=0.04) and for rs1183739 for age at examination (cut-off 65 years; OR 1.17, p=0.02), but these would not be significant after adjusting for multiple comparisons and their Bayes factors were only modest. This largest association study performed to define the role of any gene in the pathogenesis of Parkinson's disease revealed no overall strong association of Omi/HtrA2 variants with PD in populations worldwide. [less ▲]

Detailed reference viewed: 58 (1 UL)
Full Text
Peer Reviewed
See detailDissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis.
Burbulla, Lena F.; Schelling, Carina; Kato, Hiroki et al

in Human molecular genetics (2010), 19(22), 4437-52

The mitochondrial chaperone mortalin has been linked to neurodegeneration in Parkinson's disease (PD) based on reduced protein levels in affected brain regions of PD patients and its interaction with the ... [more ▼]

The mitochondrial chaperone mortalin has been linked to neurodegeneration in Parkinson's disease (PD) based on reduced protein levels in affected brain regions of PD patients and its interaction with the PD-associated protein DJ-1. Recently, two amino acid exchanges in the ATPase domain (R126W) and the substrate-binding domain (P509S) of mortalin were identified in Spanish PD patients. Here, we identified a separate and novel variant (A476T) in the substrate-binding domain of mortalin in German PD patients. To define a potential role as a susceptibility factor in PD, we characterized the functions of all three variants in different cellular models. In vitro import assays revealed normal targeting of all mortalin variants. In neuronal and non-neuronal human cell lines, the disease-associated variants caused a mitochondrial phenotype of increased reactive oxygen species and reduced mitochondrial membrane potential, which were exacerbated upon proteolytic stress. These functional impairments correspond with characteristic alterations of the mitochondrial network in cells overexpressing mutant mortalin compared with wild-type (wt), which were confirmed in fibroblasts from a carrier of the A476T variant. In line with a loss of function hypothesis, knockdown of mortalin in human cells caused impaired mitochondrial function that was rescued by wt mortalin, but not by the variants. Our genetic and functional studies of novel disease-associated variants in the mortalin gene define a loss of mortalin function, which causes impaired mitochondrial function and dynamics. Our results support the role of this mitochondrial chaperone in neurodegeneration and underscore the concept of impaired mitochondrial protein quality control in PD. [less ▲]

Detailed reference viewed: 85 (4 UL)
Full Text
Peer Reviewed
See detailSingle-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene.
Elstner, Matthias; Morris, Christopher M.; Heim, Katharina et al

in Annals of neurology (2009), 66(6), 792-8

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms ... [more ▼]

OBJECTIVE: The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined. METHODS: We carried out whole-genome expression profiling of isolated human substantia nigra (SN) neurons from patients with PD vs. controls followed by association analysis of tagging single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was investigated in a German PD sample and confirmed in Italian and British cohorts. RESULTS: We identified four differentially expressed genes located in PD candidate pathways, ie, MTND2 (mitochondrial, p = 7.14 x 10(-7)), PDXK (vitamin B6/dopamine metabolism, p = 3.27 x 10(-6)), SRGAP3 (axon guidance, p = 5.65 x 10(-6)), and TRAPPC4 (vesicle transport, p = 5.81 x 10(-6)). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 x 10(-7) (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.18-1.44). INTERPRETATION: We provide an example of how microgenomic genome-wide expression studies in combination with association analysis can aid to identify genetic modifiers in neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on disease risk and therapy in PD. [less ▲]

Detailed reference viewed: 79 (4 UL)
Full Text
Peer Reviewed
See detailGenome-wide association study reveals genetic risk underlying Parkinson's disease.
Simon-Sanchez, Javier; Schulte, Claudia; Bras, Jose M. et al

in Nature genetics (2009), 41(12), 1308-12

We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we ... [more ▼]

We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding alpha-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 x 10(-16)) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 x 10(-16)). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 x 10(-8)) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 x 10(-5)). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease. [less ▲]

Detailed reference viewed: 172 (1 UL)