Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

The relevance of verbal and visuo-spatial abilities for verbal number skills – what matters in 5 to 6 year olds? Cornu, Véronique ; Schiltz, Christine ; Martin, Romain et al Poster (2017, September) The acquisition of verbal number skills, as defined by the meaningful use of number words, marks a milestone in numerical development. In the present study, we were particularly interested in the question ... [more ▼] The acquisition of verbal number skills, as defined by the meaningful use of number words, marks a milestone in numerical development. In the present study, we were particularly interested in the question, whether verbal number skills are primarily verbal in nature, or if they call upon visuo-spatial processes, reflecting a spatial grounding of verbal number skills. 141 five- to six-year old children were tested on a range of verbal (i.e. vocabulary, phonological awareness and verbal working memory) and visuo-spatial abilities (i.e. spatial perception, visuo-motor integration and visuo-spatial working memory). We were particularly interested in the predictive role of these abilities for children’s verbal number skills (as measured by different counting and number naming tasks). In a latent regression model, basic visuo-spatial abilities, measured by spatial perception and visuo-motor integration, emerge as the most important predictor of verbal number skills. This gives raise to the assumption, that verbal number skills are, despite their verbal nature, spatially grounded in young children. [less ▲] Detailed reference viewed: 31 (4 UL)Mathematical abilities in elementary school: Do they relate to number–space associations? Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine in Journal of Experimental Child Psychology (2017) Considering the importance of mathematics in Western societies, it is crucial to understand the cognitive processes involved in the acquisition of more complex mathematical skills. The current study ... [more ▼] Considering the importance of mathematics in Western societies, it is crucial to understand the cognitive processes involved in the acquisition of more complex mathematical skills. The current study, therefore, investigated how the quality of number–space mappings on the mental number line, as indexed by the parity SNARC (spatial–numerical association of response codes) effect, relates to mathematical performances in third- and fourth-grade elementary school children. Mathematical competencies were determined using the “Heidelberger Rechentest,” a standardized German math test assessing both arithmetical and visuospatial math components. Stronger parity SNARC effects significantly related to better arithmetical but not visuospatial math abilities, albeit only in the relatively younger children. These findings highlight the importance of spatial–numerical interactions for arithmetical (as opposed to visuospatial) math skills at the fairly early stages of mathematical development. Differential relations might be explained by the reliance on problem-solving strategies involving number–space mappings only for arithmetic tasks mainly in younger children. [less ▲] Detailed reference viewed: 33 (2 UL)Training early visuo-spatial abilities: A controlled classroom-based intervention study. Cornu, Véronique ; Schiltz, Christine ; Pazouki, Tahereh et al in Applied Developmental Science (2017) Visuo-spatial training can be considered as a promising approach to provide young children with a sound foundation for later mathematical learning. We developed and implemented a tablet-based visuo ... [more ▼] Visuo-spatial training can be considered as a promising approach to provide young children with a sound foundation for later mathematical learning. We developed and implemented a tablet-based visuo-spatial intervention in kindergarten classrooms aiming to foster the development of children’s visuo-spatial and numerical abilities. A sample of N = 125 children participated in the present study, 68 children were part of the intervention group and participated in 20 training sessions of 20 minutes over a 10-week period, 57 children formed a business as usual control group. Results show that, at this young age, visuo-spatial and early math skills are already strongly interlinked. However, the training effects were domain-specific as they only improved visuo-spatial skills, but did not transfer to early math performance in the present setting. [less ▲] Detailed reference viewed: 84 (29 UL)Project NUMTEST; Assessing basic number competence without language Greisen, Max ; Schiltz, Christine ; et al Poster (2017, February 20) While numerical skills are fundamental in modern societies, some estimated 5-7% of children suffer from a mathematical learning disorder, called developmental dyscalculia (DD). Nevertheless, universally ... [more ▼] While numerical skills are fundamental in modern societies, some estimated 5-7% of children suffer from a mathematical learning disorder, called developmental dyscalculia (DD). Nevertheless, universally valid diagnostic instruments are still lacking, as all current DD test batteries are based on language instructions. Consequently their measurements are tightly linked to the specific language context of test administration and thus their results cannot easily be compared across countries. The present study is the first pilot study of a research project that aims to develop a test for basic math abilities that does not rely on language instruction and minimizes language use. To this aim, video and animation based instructions were implemented on touchscreen devices. A first version of the application has been tested with a sample of first grade children in Luxembourg’s fundamental schools, of which half used the same application but with traditional German instructions. First results indicate that performance in the experimental group was similar to the control group using verbal instructions. Relationships between linguistic background and the sample’s performance on one hand and qualitative usability aspects of nonverbal task instruction and tablet use with young children will be discussed. [less ▲] Detailed reference viewed: 52 (12 UL)Mental arithmetic in the bilingual brain: Language matters. ; ; Guillaume, Mathieu et al in Neuropsychologia (2017), 101 How do bilinguals solve arithmetic problems in each of their languages? We investigated this question by exploring the neural substrates of mental arithmetic in bilinguals. Critically, our population was ... [more ▼] How do bilinguals solve arithmetic problems in each of their languages? We investigated this question by exploring the neural substrates of mental arithmetic in bilinguals. Critically, our population was composed of a homogeneous group of adults who were fluent in both of their instruction languages (i.e., German as first instruction language and French as second instruction language). Twenty bilinguals were scanned with fMRI (3T) while performing mental arithmetic. Both simple and complex problems were presented to disentangle memory retrieval occuring in very simple problems from arithmetic computation occuring in more complex problems. In simple additions, the left temporal regions were more activated in German than in French, whereas no brain regions showed additional activity in the reverse constrast. Complex additions revealed the reverse pattern, since the activations of regions for French surpassed the same computations in German and the extra regions were located predominantly in occipital regions. Our results thus highlight that highly proficient bilinguals rely on differential activation patterns to solve simple and complex additions in each of their languages, suggesting different solving procedures. The present study confirms the critical role of language in arithmetic problem solving and provides novel insights into how highly proficient bilinguals solve arithmetic problems. [less ▲] Detailed reference viewed: 35 (5 UL)Assessing the cerebral correlates of non-symbolic number processing with fast periodic visual stimulation Guillaume, Mathieu ; ; et al Poster (2017) Some authors recently challenged the claim that numerical processes specifically handle non-symbolic magnitudes and they alternately suggested that general visual and/or control executive processes could ... [more ▼] Some authors recently challenged the claim that numerical processes specifically handle non-symbolic magnitudes and they alternately suggested that general visual and/or control executive processes could explain performance in number comparison tasks. To further investigate this issue, we set up an EEG paradigm in which we recorded neural responses to the passive viewing of different arrays of basic visual forms. The stimuli sequence followed a fast and sinusoidal contrast modulation at the frequency of 10Hz (ten items per second). Visual properties of elements randomly changed from item to item, but their number was manipulated: in a control condition, arrays always contained the same number, and in the experimental conditions, the number periodically changed (each eight iteration, at 1.25Hz). We varied the numerical ratio between the frequent and the rare number throughout the experimental conditions. We recorded significant responses on occipital and parietal electrodes to the oddball frequency and its harmonics during our experimental conditions. Crucially, the strength of the signal was proportionally larger when the numerical ratio was larger. The results suggest that implicit and passive viewing of quick sequence of arrays was sufficient to automatically elicit neural synchronisation to numerical magnitudes without any explicit involvement of higher general cognitive processes. [less ▲] Detailed reference viewed: 17 (3 UL)How and Why Do Number-Space Associations Co-Vary in Implicit and Explicit Magnitude Processing Tasks? Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine in Journal of Numerical Cognition (2017) Detailed reference viewed: 17 (3 UL)How Do Different Aspects of Spatial Skills Relate to Early Arithmetic and Number Line Estimation? Cornu, Véronique ; ; Schiltz, Christine et al in Journal of Numerical Cognition (2017), 3(2), The present study investigated the predictive role of spatial skills for arithmetic and number line estimation in kindergarten children (N = 125). Spatial skills are known to be related to mathematical ... [more ▼] The present study investigated the predictive role of spatial skills for arithmetic and number line estimation in kindergarten children (N = 125). Spatial skills are known to be related to mathematical development, but due to the construct’s non-unitary nature, different aspects of spatial skills need to be differentiated. In the present study, a spatial orientation task, a spatial visualization task and visuo-motor integration task were administered to assess three different aspects of spatial skills. Furthermore, we assessed counting abilities, knowledge of Arabic numerals, quantitative knowledge, as well as verbal working memory and verbal intelligence in kindergarten. Four months later, the same children performed an arithmetic and a number line estimation task to evaluate how the abilities measured at time 1 predicted early mathematics outcomes. Hierarchical regression analysis revealed that children’s performance in arithmetic was predicted by their performance in the spatial orientation and visuo-motor integration task, as well as their knowledge of the Arabic numerals. Performance in number line estimation was significantly predicted by the children’s spatial orientation performance. Our findings emphasize the role of spatial skills, notably spatial orientation, in mathematical development. The relation between spatial orientation and arithmetic was partially mediated by the number line estimation task. Our results further show that some aspects of spatial skills might be more predictive of mathematical development than others, underlining the importance to differentiate within the construct of spatial skills when it comes to understanding numerical development. [less ▲] Detailed reference viewed: 79 (30 UL)Different aspects of spatial skills and their relation to early mathematics Cornu, Véronique ; ; Schiltz, Christine et al Poster (2016, September 29) We aimed at investigating the predictive role of spatial skills for arithmetic and number line estimation in kindergarten children (N = 125). Several studies highlighted the relation between spatial ... [more ▼] We aimed at investigating the predictive role of spatial skills for arithmetic and number line estimation in kindergarten children (N = 125). Several studies highlighted the relation between spatial skills and mathematics. However, due to their non-unitary nature, different aspects of spatial skills need to be differentiated to clarify the relative importance of different aspects of spatial skills for mathematics. In the present study, at time 1, a spatial perception task, a spatial visualization task and visuo-motor integration task were administered to assess different aspects of spatial skills. Furthermore we assessed domain-specific skills and verbal domain-general skills. Four months later, the same children performed an arithmetic task and a number line estimation task to evaluate how the abilities measured at time 1 predict early mathematics. Hierarchical regression modelling revealed that children’s performance on the spatial perception task was predictive of their performance in both arithmetic and number line estimation, whereas visuo-motor integration and knowledge of the Arabic numerals significantly predicted arithmetic. The predictive relation between spatial perception and arithmetic was partially mediated by the number line estimation task. Our findings emphasize the role of spatial skills, notably spatial perception, in mathematical development. These results reveal the importance to differentiate within the construct of spatial skills when studying their role in numerical development. The development and implementation of pre-school interventions fostering children’s spatial perception and visuo-motor integration might thus be a promising approach for providing children with a sound foundation for later mathematical learning. [less ▲] Detailed reference viewed: 103 (22 UL)How Math Anxiety relates to Number-Space Associations. Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine in Frontiers in Psychology (2016), 7(1401), Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the ... [more ▼] Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety. [less ▲] Detailed reference viewed: 31 (3 UL)Age modulates the relation between number-space associations and arithmetical abilities in elementary school children Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine Poster (2016, September) Evidence for number-space associations comes from the SNARC effect, consisting in faster RTs to small/large digits with the left/right hand respectively. In adults, number-space associations relate to ... [more ▼] Evidence for number-space associations comes from the SNARC effect, consisting in faster RTs to small/large digits with the left/right hand respectively. In adults, number-space associations relate to mathematical proficiency in that individuals with weaker arithmetic performances feature stronger SNARC effects (Hoffmann et al., 2014). However, in children far less is known about number-space associations and how they affect arithmetic performance. We therefore investigated the relationship between the classical parity SNARC effect and mathematical proficiency, assessed using the Heidelberger Rechentest, in elementary school children aged 8-11 years (n=55, mean=9.5). Overall, the parity SNARC regression slopes (-11.37, p<.001) negatively correlated with HRT arithmetical (r=-.28, p=.04; even when controlling for parity judgment RTs: r=-.37, p=.01), but not HRT visuo-spatial subscale scores (r=-.03, p=.82), indicating better arithmetic performances with stronger number-space associations. However, this relation was significantly moderated by age, since the interaction between the parity SNARC effect and age accounted for a significant proportion of the variance in HRT arithmetical scores (ΔR2=.07, b=0.26, t(51)=2.29, p=.03). A significant negative association was observed only in younger children (b=-0.35, t=-3.49, p=.001) aged below 9.5 years (n=29), while the SNARC effect did not relate to arithmetic performance in the remaining older children. This suggests that number-space associations are beneficial for arithmetic performance at relatively early stages of mathematical learning. During the course of mathematical development in childhood, number-space associations then turn superfluous for arithmetic achievement until they possibly become interfering in young adults, who have reached the peak of their developmental trajectory. [less ▲] Detailed reference viewed: 12 (4 UL)THE IMPACT OF LANGUAGE BACKGROUND ON BASIC MATH COMPETENCE Poncin, Alexandre ; ; Schiltz, Christine Poster (2016, April 02) German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent regarding the Arabic number code. Evidence indicates that the ... [more ▼] German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent regarding the Arabic number code. Evidence indicates that the linguistic structure of number words can facilitate or impede numerical development (Zuber, Pixner, & Moeller, 2009). Moreover, in transcoding tasks more mistakes are made in non-transparent compared to transparent languages (Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014). We used a new paradigm of transcoding task in which 28 French-speaking (FR) and 19 German-speaking (GE) 4th grade children had to listen two digits numbers. The new thing was that we manipulate the order of appearance of the units and the tens of the number in three conditions: Units-First (UF), Tens-First (TF) and Simultaneous (S). Then, the subjects had to choose the heard number among four numbers presented on the computer screen. Results sows that GE are globally slower than FR (F(1,45) = 3.95, p = .053). The largest difference was observed for the TF: (t(45) = -3.729, p = .001). Moreover, when the order of the number appearance was congruent with the number word system, the transcoding was faster in both languages. For GE the S condition was slower than TF condition (F(2,36) = 6.918, p = .008) and than UF condition (F(2,36) = 6.918, p = .003.). For FR, the TF was faster than S (F(2,54) = 69.419, p < .001) and UF (F(2,54) = 69.419, p < .001). All these data indicate that language structure qualitatively impacts on basic numerical tasks. [less ▲] Detailed reference viewed: 17 (1 UL)THE IMPACT OF LANGUAGE BACKGROUND ON BASIC MATH COMPETENCE Poncin, Alexandre ; ; Schiltz, Christine Presentation (2016, February 18) German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent regarding the Arabic number code. Evidence indicates that the ... [more ▼] German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent regarding the Arabic number code. Evidence indicates that the linguistic structure of number words can facilitate or impede numerical development (Zuber, Pixner, & Moeller, 2009). Moreover, in transcoding tasks more mistakes are made in non-transparent compared to transparent languages (Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014). We used a new paradigm of transcoding task in which 28 French-speaking (FR) and 19 German-speaking (GE) 4th grade children had to listen two digits numbers. The new thing was that we manipulate the order of appearance of the units and the tens of the number in three conditions: Units-First (UF), Tens-First (TF) and Simultaneous (S). Then, the subjects had to choose the heard number among four numbers presented on the computer screen. Results sows that GE are globally slower than FR (F(1,45) = 3.95, p = .053). The largest difference was observed for the TF: (t(45) = -3.729, p = .001). Moreover, when the order of the number appearance was congruent with the number word system, the transcoding was faster in both languages. For GE the S condition was slower than TF condition (F(2,36) = 6.918, p = .008) and than UF condition (F(2,36) = 6.918, p = .003.). For FR, the TF was faster than S (F(2,54) = 69.419, p < .001) and UF (F(2,54) = 69.419, p < .001). All these data indicate that language structure qualitatively impacts on basic numerical tasks. [less ▲] Detailed reference viewed: 16 (1 UL)Cardinal and ordinal processing in spatial neglect Sosson, Charlotte ; di Luca, Samuel ; Guillaume, Mathieu et al Poster (2016, January) Patients with spatial neglect do not only have difficulties in orienting attention in physical space but also in representational space, especially with respect to the mental representation of numbers ... [more ▼] Patients with spatial neglect do not only have difficulties in orienting attention in physical space but also in representational space, especially with respect to the mental representation of numbers. Indeed, in a study by Zorzi et al. (2012) neglect patients were particularly slow when asked to compare the number 4 to the standard number 5, suggesting difficulties to process numbers on the left side of an internal standard. This difficulty was observed in a magnitude judgement, but not in a parity task, implying a dissociation between explicit and implicit processing of numerical magnitude. The present study aimed at replicating these findings and extending them to non-numerical sequences in order to complement the data obtained on bisection tasks (Zamarian, et al., 2007). Sixteen right-sided brain damaged patients with neglect (N+ =6; 4 females; all right handers; mean age: 55 +/- 8,7) and without neglect (N- =10; 2 females; all right hander; mean age: 48 +/- 6.2) participated in the study. They were administered the following tasks: a magnitude and a parity judgement task; an ordinal judgement task on numbers and on letters and a consonant/vowel classification task. For each task and each patient, a linear regression was computed in which the difference between the response times for the left effector (index finger) and the right effector (middle finger) was predicted by number magnitude. A negative slope will indicate the presence of a SNARC-like effect. We compared the negative slopes of the two patient groups using a Chi-square. Considering the proportion of SNARC-like effects, it appeared that, on one hand, N+ patients showed fewer SNARC-like effects than N- patients during magnitude judgements on numbers. Thus confirming the findings by Zorzi et al. (2012). On the other hand, N+ patients behaved similarly to N- patients for the parity judgements on numbers and for the order judgements both on numbers and letters. This last result suggest a dissociation between the spatial representation of magnitude and of order in N+ patients. These results point towards a specific impairment in explicit access to number magnitude in spatial hemineglect. [less ▲] Detailed reference viewed: 59 (11 UL)Solving arithmetic problems in first and second language: Does the language context matter? Van Rinsveld, Amandine ; Schiltz, Christine ; et al in Learning and instruction (2016) Learning mathematics in a second language is a challenge for many learners. The purpose of the study was to provide new insights into the role of the language context in mathematic learning and more ... [more ▼] Learning mathematics in a second language is a challenge for many learners. The purpose of the study was to provide new insights into the role of the language context in mathematic learning and more particularly arithmetic problem solving. We investigated this question in a GermaneFrench bilingual educational setting in Luxembourg. Participants with increasing bilingual proficiency levels were invited to solve additions in both their first and second instruction languages: German and French. Arithmetic problems were presented in two different conditions: preceded by a semantic judgment or without additional language context. In the French session we observed that additions were systematically performed faster in the condition with an additional language context. In contrast no effect of the context was observed in the German session. In conclusion, providing a language context enhanced arithmetic performances in bilinguals' second instruction language. This finding entails implications for designing optimal mathematic learning environments in multilingual educational settings. [less ▲] Detailed reference viewed: 111 (10 UL)Math anxiety is predicted by the strength of number-space associations, over and beyond arithmetic ability and WM Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine Poster (2015, October) Math skills are undeniably important in everyday life. Math anxiety can, however, threaten their optimal development. Given that a fifth of the population experiences high math anxiety, it is important to ... [more ▼] Math skills are undeniably important in everyday life. Math anxiety can, however, threaten their optimal development. Given that a fifth of the population experiences high math anxiety, it is important to identify its origins in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of math ability, WM, and spatial performance. Recent evidence, however, suggests that it also depends on basic numerical processes, with high math anxious individuals featuring less precise numerical representations, as indexed by stronger distance effects. Another marker for the nature of numerical representations is the SNARC effect, alluding to their spatial organization. Although number-space associations depend on WM, spatial performance and arithmetic ability - all related to math anxiety - their relationship with the latter has never been tested. We thus determined whether math anxiety is related to the strength of number-space associations. All participants (n=60, 28 female) completed the r-MARS, the parity judgment, an arithmetic, and visuospatial WM task. We replicated previous findings on the negative relationships between math anxiety and arithmetic ability (r=-0.3, p=0.02), and WM (r=-0.29, p=0.03). But most importantly, we found a significant negative correlation between the SNARC effect and math anxiety (slope=-11.42, r=-0.43, p<0.001), with high math anxious individuals featuring greater interference of the irrelevant magnitude-associated spatial code. Interestingly, number-space associations were the only significant predictor of math anxiety in a multiple regression analysis. Our findings thus provide further evidence for the association between numerical representations and math anxiety, over and beyond arithmetic ability and WM. [less ▲] Detailed reference viewed: 48 (8 UL)How does Language influence Number transcoding? Poncin, Alexandre ; ; Schiltz, Christine Poster (2015, September 29) The German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent with respect to the Arabic number code. The linguistic ... [more ▼] The German number word system inverts units and tens compared to the Arabic notation. This is not the case in French, which is more transparent with respect to the Arabic number code. The linguistic structure of number words can facilitate or impede numerical development and performances in number transcoding tasks. We used an original transcoding paradigm with 4th grade French-speaking children, 4th grade German-speaking children, as well as French-speaking and German-speaking young adults who listened to two-digit numbers and had to identify the heard number among four visually presented Arabic numbers. The novelty of our paradigm consisted in manipulating the order of appearance of the units and tens of the Arabic numbers, leading to three conditions: units-first, tens-first and simultaneous appearance. Results revealed that German-speaking children were globally slower than their French-speaking peers. In contrast, language did not affect overall transcoding speed in young adults. Moreover children from both language groups were faster in transcoding when the order of digit appearance was congruent with the number word system (i.e. units-first in German and tens-first in French) compared to the incongruent and the simultaneous presentation order. This pattern indicates that children tended to process number sequentially during the transcoding task. This pattern differed from the behavior observed in adult, since both German- and French-speaking adults solved the transcoding task faster when tens were presented before units (i.e. tens-first) than the reverse. [less ▲] Detailed reference viewed: 17 (1 UL)The link between number-space associations and visuospatial abilities depends on visualization profile Georges, Carrie ; Hoffmann, Danielle ; Schiltz, Christine Poster (2015, September) Background: Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster RTs to small/large digits with the left/right hand ... [more ▼] Background: Evidence for number-space associations comes from the spatial-numerical association of response-codes (SNARC) effect, consisting in faster RTs to small/large digits with the left/right hand respectively. However, the cognitive origin of the effect remains elusive. Previous studies suggested that it might depend on visuospatial processes, since individuals with better performances in 2D (but not 3D) mental rotation tasks displayed weaker number-space associations (Viarouge et al., 2014). Aims: Given the high inter-individual variability of number-space associations, we determined whether the SNARC effect always relies on visuospatial processes or whether its cognitive origin varies with visualization preferences. Method: We distinguished between object-visualizers (n=42, 23 female, age=22.93) and spatial-visualizers (n=42, 15 female, age=23.9) using the Object-Spatial Imagery Questionnaire (Blajenkova et al., 2006). All participants performed the parity judgment task, a 2D visuospatial test and a 3D mental rotation task. Results: In object-visualizers, weaker SNARC slopes were associated with better performances in the 2D (r=0.46, p=0.004), but not 3D (r=-0.04, p=0.79) task, thereby replicating previous observations. Conversely, in spatial-visualizers, the performances in both visuospatial tasks were unrelated to the SNARC effect (2D: r=0.02, p=0.89; 3D: r=0.2, p=0.22). Conclusions: These findings suggest that in object-visualizers, number-space associations and 2D performances underlie common visuospatial processes. Conversely, in spatial-visualizers, number-space associations seem to result from cognitive mechanisms other than those recruited during the aforementioned visuospatial tasks (e.g., verbal-spatial coding mechanisms). All in all, we were able to further unravel the mechanisms underlying number-space associations and could highlight visualization preferences as an additional explanation for the great inter-individual variability of the SNARC effect. [less ▲] Detailed reference viewed: 47 (7 UL)Does body motion influence arithmetic problem solving Sosson, Charlotte ; Guillaume, Mathieu ; Schuller, Anne-Marie et al Poster (2015, September) Recent evidence indicates that body movements can influence number processing (Hartmann, et al., 2012) and arithmetic problem solving (Lugli, et al., 2013). Thus it was for instance observed that moving ... [more ▼] Recent evidence indicates that body movements can influence number processing (Hartmann, et al., 2012) and arithmetic problem solving (Lugli, et al., 2013). Thus it was for instance observed that moving the arm rightward and upward led to better performance during additions and leftward and downward during subtractions (Wiemers, et al., 2014). These results could be explained by the fact that left/right body motion can be (in)compatible with the attentional motion towards the left/right on the mental number line known to underlie subtractions/additions (i.e. operational momentum effect) (McCrink, et al., 2007; Lindemann, et al., 2011). The compatible situations (i.e. leftwards motion - subtraction and rightwards motion - addition) thus are expected to facilitate arithmetic performance compared to incompatible ones. The present study was designed to test this hypothesis during arithmetic problem solving using: (1) physical passive rotary whole-body motion and (2) virtual environment mimicking a similar passive body motion. Findings of the present study confirm the classical effects known to play a role in arithmetic problem solving. They also revealed that passive rotary whole-body motion - implemented physically or by virtual reality - had no particular effect on the solving of calculations. This is in contrast with previous studies that showed an influence of active head/arm or passive translational movements on numerical task performance. [less ▲] Detailed reference viewed: 23 (4 UL)Functional connectivity and structural analyses in the bilingual brain: implications for arithmetic. Van Rinsveld, Amandine ; ; Guillaume, Mathieu et al Poster (2015, June) Do bilinguals use the same brain networks than monolinguals when they solve arithmetic problems? We investigated this question by using resting-state functional connectivity and cortical thickness ... [more ▼] Do bilinguals use the same brain networks than monolinguals when they solve arithmetic problems? We investigated this question by using resting-state functional connectivity and cortical thickness measurements. Recent studies highlighted differences of functional connectivity (e.g. Grady et al., 2015) and of brain structure (e.g. Klein et al., 2014) between bilinguals and monolinguals. However, no study so far has linked these differences to arithmetic problem solving, a cognitive skill that may at least partially rely on language processing. Our study population was composed of carefully selected German-French bilinguals (N = 20) who acquired each language at the same age, leading to high proficiency levels in both languages. These bilinguals all attended university in their second language at the time of the experiment, namely French. Therefore we selected a control group of French-speaking monolinguals (N = 12). Structural and functional images of brain activity were collected using a 3T MRI scanner. Functional scans of resting-state were acquired during a 6-minute session, with eyes closed. A 3D T1-weighted data set encompassing the whole brain was acquired to provide detailed anatomy (1 mm3), which was used both for the co-registration of functional data and for morphometric analyses. Prior to the scanning session, all participants took a behavioral test measuring their arithmetic skill. For the resting-state part of the study, we generated spheres based on ROIs reported in the literature as magnitude manipulation- and language-related areas during arithmetic problem solving (Klein et al. 2013), and addition-related areas reported in a recent meta-analysis (Arsalidou & Tayor, 2011). We used these spheres as seed regions for the analyses. We correlated resting activations between these regions and compared these correlations in bilinguals versus monolinguals. Results showed significantly higher correlations between the three seed regions in monolinguals than in bilinguals (all ts > 2.306; ps < .05), suggesting that regions used to solve arithmetic problems form a different network in bilinguals than in monolinguals. To control for general differences between both populations, we also created two spheres in areas not specifically related to neither arithmetic nor language regions. There were no significant differences between groups in terms of correlations of these regions with resting-state activations. These results suggest that the differences observed in arithmetic problem solving regions could not account for by general differences between groups. In the second part of the study, we aimed at verifying whether the differences in functional connectivity we observed between bilinguals and monolinguals coincide with structural brain differences. We measured and compared cortical thickness in both groups. Then we compared the correlations between cortical thickness and arithmetic skill in both groups (considering differences with corrected p < .001). Cortical thickness of areas commonly associated to language or number processing correlated differently with arithmetic skill as a function of the group: Higher cortical thickness of left pars triangularis, bilateral superior parietal gyri and precuneus positively correlated with arithmetic skill in monolinguals but negatively correlated with arithmetic skill in bilinguals. These results highlight that there are different relations between brain structure and arithmetic skills in bilinguals and monolinguals. In conclusion the current study provides new evidence for differences between bilinguals’ and monolinguals’ brain networks engaged in arithmetic problem solving, even without any arithmetic task during the data acquisition. These findings based on functional connectivity and brain structure analyses also reveal the general involvement of language in arithmetic problem solving in bilingual as well as non-bilingual individuals. [less ▲] Detailed reference viewed: 33 (8 UL) |
||