References of "Ruiz, Victor G"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDensity-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces
Ruiz, Victor G.; Liu, Wei; Tkatchenko, Alexandre UL

in PHYSICAL REVIEW B (2016), 93(3),

Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In ... [more ▼]

Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In order to tackle this problem, we have developed a method within density-functional theory (DFT) to model screened van der Waals interactions (vdW) for atoms and molecules on surfaces (the so-called DFT+vdW(surf) method). The relatively high accuracy of the DFT+vdW(surf) method in the calculation of both adsorption distances and energies, as well as the high degree of its reliability across a wide range of adsorbates, indicates the importance of the collective electronic effects within the extended substrate for the calculation of the vdW energy tail. We examine in detail the theoretical background of the method and assess its performance for adsorption phenomena including the physisorption of Xe on selected close-packed transition metal surfaces and 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on Au(111). We also address the performance of DFT+vdW(surf) in the case of non-close-packed surfaces by studying the adsorption of Xe on Cu(110) and the interfaces formed by the adsorption of a PTCDA monolayer on the Ag(111), Ag(100), and Ag(110) surfaces. We conclude by discussing outstanding challenges in the modeling of vdW interactions for studying atomic and molecular adsorbates on inorganic substrates. [less ▲]

Detailed reference viewed: 147 (1 UL)
Full Text
Peer Reviewed
See detailMany-body dispersion effects in the binding of adsorbates on metal surfaces
Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre UL

in JOURNAL OF CHEMICAL PHYSICS (2015), 143(10),

A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we ... [more ▼]

A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches. (C) 2015 AIP Publishing LLC. [less ▲]

Detailed reference viewed: 105 (2 UL)
Full Text
Peer Reviewed
See detailNon-additivity of molecule-surface van der Waals potentials from force measurements
Wagner, Christian; Fournier, Norman; Ruiz, Victor G. et al

in NATURE COMMUNICATIONS (2014), 5

Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system ... [more ▼]

Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. [less ▲]

Detailed reference viewed: 101 (0 UL)
Full Text
Peer Reviewed
See detailUnderstanding Structure and Bonding of Multilayered Metal-Organic Nanostructures
Egger, David A.; Ruiz, Victor G.; Said, Wissam A. et al

in JOURNAL OF PHYSICAL CHEMISTRY C (2013), 117(6), 3055-3061

For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces we ... [more ▼]

For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces we here model a complex, yet prototypical, three-component system consisting of a Cu-phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still they are also distinctly different, as only at the Ag-(111) PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. [less ▲]

Detailed reference viewed: 72 (0 UL)
Full Text
Peer Reviewed
See detailStructure and energetics of benzene adsorbed on transition-metal surfaces: density-functional theory with van der Waals interactions including collective substrate response
Liu, Wei; Ruiz, Victor G.; Zhang, Guo-Xu et al

in NEW JOURNAL OF PHYSICS (2013), 15

The adsorption of benzene on metal surfaces is an important benchmark system for hybrid inorganic/organic interfaces. The reliable determination of the interface geometry and binding energy presents a ... [more ▼]

The adsorption of benzene on metal surfaces is an important benchmark system for hybrid inorganic/organic interfaces. The reliable determination of the interface geometry and binding energy presents a significant challenge for both theory and experiment. Using the Perdew-Burke-Ernzerhof (PBE), PBE+vdW (van der Waals) and the recently developed PBE+vdW(surf) (density-functional theory with vdW interactions that include the collective electronic response of the substrate) methods, we calculated the structures and energetics for benzene on transition-metal surfaces: Cu, Ag, Au, Pd, Pt, Rh and Ir. Our calculations demonstrate that vdW interactions increase the binding energy by more than 0.70 eV for physisorbed systems (Cu, Ag and Au) and by an even larger amount for strongly bound systems (Pd, Pt, Rh and Ir). The collective response of the substrate electrons captured via the vdW(surf) method plays a significant role for most substrates shortening the equilibrium distance by 0.25 angstrom for Cu and decreasing the binding energy by 0.27 eV for Rh. The reliability of our results is assessed by comparison with calculations using the random-phase approximation including renormalized single excitations and the experimental data from temperature-programmed desorption microcalorimetry measurements and low-energy electron diffraction. [less ▲]

Detailed reference viewed: 116 (0 UL)
Full Text
Peer Reviewed
See detailDensity-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems
Ruiz, Victor G.; Liu, Wei; Zojer, Egbert et al

in PHYSICAL REVIEW LETTERS (2012), 108(14),

The electronic properties and the function of hybrid inorganic-organic systems (HIOS) are intimately linked to their interface geometry. Here we show that the inclusion of the many-body collective ... [more ▼]

The electronic properties and the function of hybrid inorganic-organic systems (HIOS) are intimately linked to their interface geometry. Here we show that the inclusion of the many-body collective response of the substrate electrons inside the inorganic bulk enables us to reliably predict the HIOS geometries and energies. This is achieved by the combination of dispersion-corrected density-functional theory (the DFT+ van der Waals approach) [Phys. Rev. Lett. 102, 073005 (2009)], with the Lifshitz-Zaremba-Kohn theory for the nonlocal Coulomb screening within the bulk. Our method yields geometries in remarkable agreement (approximate to 0.1 angstrom) with normal incidence x-ray standing wave measurements for the 3, 4, 9, 10-perylene-tetracarboxylic acid dianhydride (C24O6H8, PTCDA) molecule on Cu(111), Ag(111), and Au(111) surfaces. Similarly accurate results are obtained for xenon and benzene adsorbed on metal surfaces. [less ▲]

Detailed reference viewed: 104 (2 UL)