References of "Rossion, Bruno"
     in
Bookmark and Share    
Peer Reviewed
See detailLateralization for faces in prereaders depends on the perceptual processing level: An EEG Fast Periodic Visual Stimulation study
Lochy, Aliette UL; Schiltz, Christine UL; Rossion, Bruno

Poster (2019, January)

The developmental origin of human adults’ right hemispheric lateralization to face stimuli is unclear, in particular because young infants’ right hemispheric advantage in face perception is no longer ... [more ▼]

The developmental origin of human adults’ right hemispheric lateralization to face stimuli is unclear, in particular because young infants’ right hemispheric advantage in face perception is no longer present in preschool children, before written language acquisition. Here we used fast periodic visual stimulation (FPVS) with scalp electrophysiology to test 52 preschool children (5 years old) at two levels of face processing (i.e., faces vs. objects, or discrimination between individual faces). While the contrast between faces and nonface objects elicits strictly bilateral occipital responses in children, discrimination of faces on the basis of identity in the same children is associated with a strong right hemispheric lateralization over the occipito-temporal cortex. Inversion of the face stimuli does not modulate right lateralization but significantly decreases the discrimination response. Furthermore, there is no relationship between right hemispheric lateralization in individual face discrimination and preschool levels of letter recognition. These observations suggest that right lateralization for face perception is essentially driven by the necessity to process faces at the level of identity. Overall, they also challenge the view that the adult right hemispheric lateralization for face perception emerges late and slowly during childhood due to increased competition with left lateralized posterior network for reading. [less ▲]

Detailed reference viewed: 35 (2 UL)
Full Text
Peer Reviewed
See detailThe non-linear development of the right hemispheric specialization for human face perception
Lochy, Aliette UL; de Heering, Adelaïde; Rossion, Bruno

in Neuropsychologia (2019), 126

The developmental origins of human adults’ right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception ... [more ▼]

The developmental origins of human adults’ right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception. On the other hand, it has been proposed that the adult right hemispheric lateralization for face perception slowly emerges during childhood due to reading acquisition, which increases left lateralized posterior responses to competing written material (e.g., visual letters and words). Since methodological approaches used in infant and children typically differ when their face capabilities are explored, resolving this issue has been difficult. Here we tested 5- year-old preschoolers varying in their level of visual letter knowledge with the same fast periodic visual stimulation (FPVS) paradigm leading to strongly right lateralized electrophysiological occipito-temporal face-selective responses in 4- to 6-month-old infants (de Heering and Rossion, 2015). Children's face-selective response was quantitatively larger and differed in scalp topography from infants’, but did not differ across hemispheres. There was a small positive correlation between preschoolers’ letter knowledge and a non-normalized index of right hemispheric specialization for faces. These observations show that previous discrepant results in the literature reflect a genuine nonlinear development of the neural processes underlying face perception and are not merely due to methodological differences across age groups. We discuss several factors that could contribute to the adult right hemispheric lateralization for faces, such as myelination of the corpus callosum and reading acquisition. Our findings point to the value of FPVS coupled with electroencephalography to assess specialized face perception processes throughout development with the same methodology [less ▲]

Detailed reference viewed: 12 (1 UL)
Full Text
Peer Reviewed
See detailDoes Extensive Training at Individuating Novel Objects in Adulthood Lead to Visual Expertise? The Role of Facelikeness.
Lochy, Aliette UL; Zimmermann, Friederike G. S.; Laguesse, Renaud et al

in Journal of cognitive neuroscience (2018), 30(4), 449-467

Human adults have a rich visual experience thanks to seeing human faces since birth, which may contribute to the acquisition of perceptual processes that rapidly and automatically individuate faces ... [more ▼]

Human adults have a rich visual experience thanks to seeing human faces since birth, which may contribute to the acquisition of perceptual processes that rapidly and automatically individuate faces. According to a generic visual expertise hypothesis, extensive experience with nonface objects may similarly lead to efficient processing of objects at the individual level. However, whether extensive training in adulthood leads to visual expertise remains debated. One key issue is the extent to which the acquisition of visual expertise depends on the resemblance of objects to faces in terms of the spatial configuration of parts. We therefore trained naive human adults to individuate a large set of novel parametric multipart objects. Critically, one group of participants trained with the objects in a "facelike" stimulus orientation, whereas a second group trained with the same objects but with the objects rotated 180 degrees in the picture plane into a "nonfacelike" orientation. We used a fast periodic visual stimulation EEG protocol to objectively quantify participants' ability to discriminate untrained exemplars before and after training. EEG responses associated with the frequency of identity change in a fast stimulation sequence, which reflects rapid and automatic perceptual processes, were observed over lateral occipital sites for both groups before training. There was a significant, albeit small, increase in these responses after training but only for the facelike group and only to facelike stimuli. Our findings indicate that perceived facelikeness plays a role in visual expertise and highlight how the adult perceptual system exploits familiar spatial configurations when learning new object categories. [less ▲]

Detailed reference viewed: 5 (0 UL)
Full Text
Peer Reviewed
See detailA rapid, objective and implicit measure of visual quantity discrimination
Guillaume, Mathieu UL; Mejias Vanslype, Sandrine UL; Rossion, Bruno et al

in Neuropsychologia (2018), 111

There is evidence that accurate and rapid judgments of visual quantities form an essential component of human mathematical ability. However, explicit behavioural discrimination measures of visual ... [more ▼]

There is evidence that accurate and rapid judgments of visual quantities form an essential component of human mathematical ability. However, explicit behavioural discrimination measures of visual quantities are readily contaminated both by variations in low-level physical parameters and higher order cognitive factors, while implicit measures often lack objectivity and sensitivity at the individual participant level. Here, with electrophysiological frequency tagging, we show discrimination differences between briefly presented visual quantities as low as a ratio of 1.4 (i.e., 14 vs. 10 elements). From this threshold, the neural discrimination response increases with parametrically increasing differences in ratio between visual quantities. Inter-individual variability in magnitude of the EEG response at this population threshold ratio predicts behavioural performance at an independent number comparison task. Overall, these findings indicate that visual quantities are perceptually discriminated automatically and rapidly (i.e., at a glance) within the occipital cortex. Given its high sensitivity, this paradigm could provide an implicit diagnostic neural marker of this process suitable for a wide range of fundamental and clinical applications. [less ▲]

Detailed reference viewed: 36 (1 UL)
Full Text
Peer Reviewed
See detailSelective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings.
Lochy, Aliette UL; Jacques, Corentin; Maillard, Louis et al

in Proceedings of the National Academy of Sciences of the United States of America (2018), 115(32), 7595-7604

We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the ... [more ▼]

We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the neural basis of reading. Intracerebral recordings were performed in a large group of patients (n = 37) presented with visual words inserted periodically in rapid sequences of pseudofonts, nonwords, or pseudowords, enabling classification of responses at three levels of word processing: letter, prelexical, and lexical. While letter-selective responses are found in much of the VOTC, with a higher proportion in left posterior regions, prelexical/lexical responses are confined to the middle and anterior sections of the left fusiform gyrus. This region overlaps with and extends more anteriorly than the visual word form area typically identified with functional magnetic resonance imaging. In this region, prelexical responses provide evidence for populations of neurons sensitive to the statistical regularity of letter combinations independently of lexical responses to familiar words. Despite extensive sampling in anterior ventral temporal regions, there is no hierarchical organization between prelexical and lexical responses in the left fusiform gyrus. Overall, distinct word processing levels depend on neural populations that are spatially intermingled rather than organized according to a strict postero-anterior hierarchy in the left VOTC. [less ▲]

Detailed reference viewed: 9 (3 UL)
Full Text
See detailAre parity and magnitude status of Arabic digits processed automatically? An EEG study using the fast periodic visual stimulation
Poncin, Alexandre UL; Van Rinsveld, Amandine; Guillaume, Mathieu UL et al

Presentation (2017, February 22)

Many studies have shown that humans can easily extract numerical characteristics of single digits such as numerical magnitude and parity status. We investigated whether spontaneous processing of magnitude ... [more ▼]

Many studies have shown that humans can easily extract numerical characteristics of single digits such as numerical magnitude and parity status. We investigated whether spontaneous processing of magnitude or parity status can be observed when participants are passively presented with sequences of briefly displayed Arabic digits. We assessed the parity processing by presenting seven odd digit numbers followed by one even digit (and reverse) with a sinusoidal contrast modulation at a frequency of 10HZ in one-minute sequences. The same paradigm and frequencies were used to investigate magnitude processing (i.e. seven digits smaller than five followed by one digit larger than five; and reverse) and control condition (i.e. sequence of 1-4-6-9 followed by 2-3-7 or 8). We observed a strong EEG activation on right parietal electrodes and a weaker activation on left parietal electrodes in all conditions. Left and right activations were stronger in the parity than in the other conditions, reflecting an automatic retrieval of parity information conveyed by the Arabic digits. The weaker activation during the magnitude task could reflect a more complicated access of the information corresponding to magnitude status. Right activations during the control task could be due to the fact that subjects can quickly learn to categorize numbers arbitrarily. These neuronal activation patterns are consistent with the neuro-imaging literature describing the localization of basic numerical processing. Our findings indicate that magnitude and parity status are extracted automatically from Arabic digits, even when numerical stimuli are presented without instructions at a high presentation rate. [less ▲]

Detailed reference viewed: 68 (9 UL)
Full Text
Peer Reviewed
See detailThe non-linear development of the right hemispheric specialization for human face perception.
Lochy, Aliette UL; de Heering, Adelaide; Rossion, Bruno

in Neuropsychologia (2017)

The developmental origins of human adults' right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception ... [more ▼]

The developmental origins of human adults' right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception. On the other hand, it has been proposed that the adult right hemispheric lateralization for face perception slowly emerges during childhood due to reading acquisition, which increases left lateralized posterior responses to competing written material (e.g., visual letters and words). Since methodological approaches used in infant and children typically differ when their face capabilities are explored, resolving this issue has been difficult. Here we tested 5-year-old preschoolers varying in their level of visual letter knowledge with the same fast periodic visual stimulation (FPVS) paradigm leading to strongly right lateralized electrophysiological occipito-temporal face-selective responses in 4- to 6-month-old infants (de Heering and Rossion, 2015). Children's face-selective response was quantitatively larger and differed in scalp topography from infants', but did not differ across hemispheres. There was a small positive correlation between preschoolers' letter knowledge and a non-normalized index of right hemispheric specialization for faces. These observations show that previous discrepant results in the literature reflect a genuine nonlinear development of the neural processes underlying face perception and are not merely due to methodological differences across age groups. We discuss several factors that could contribute to the adult right hemispheric lateralization for faces, such as myelination of the corpus callosum and reading acquisition. Our findings point to the value of FPVS coupled with electroencephalography to assess specialized face perception processes throughout development with the same methodology. [less ▲]

Detailed reference viewed: 17 (2 UL)
See detailLearning to read and hemispheric specialization for faces
Lochy, Aliette UL; Rossion, Bruno

Scientific Conference (2017)

Detailed reference viewed: 10 (1 UL)
Peer Reviewed
See detailAssessing the cerebral correlates of non-symbolic number processing with fast periodic visual stimulation
Guillaume, Mathieu UL; Mejias, Sandrine; Rossion, Bruno et al

Poster (2017)

Some authors recently challenged the claim that numerical processes specifically handle non-symbolic magnitudes and they alternately suggested that general visual and/or control executive processes could ... [more ▼]

Some authors recently challenged the claim that numerical processes specifically handle non-symbolic magnitudes and they alternately suggested that general visual and/or control executive processes could explain performance in number comparison tasks. To further investigate this issue, we set up an EEG paradigm in which we recorded neural responses to the passive viewing of different arrays of basic visual forms. The stimuli sequence followed a fast and sinusoidal contrast modulation at the frequency of 10Hz (ten items per second). Visual properties of elements randomly changed from item to item, but their number was manipulated: in a control condition, arrays always contained the same number, and in the experimental conditions, the number periodically changed (each eight iteration, at 1.25Hz). We varied the numerical ratio between the frequent and the rare number throughout the experimental conditions. We recorded significant responses on occipital and parietal electrodes to the oddball frequency and its harmonics during our experimental conditions. Crucially, the strength of the signal was proportionally larger when the numerical ratio was larger. The results suggest that implicit and passive viewing of quick sequence of arrays was sufficient to automatically elicit neural synchronisation to numerical magnitudes without any explicit involvement of higher general cognitive processes. [less ▲]

Detailed reference viewed: 54 (6 UL)
Full Text
Peer Reviewed
See detailMental arithmetic in the bilingual brain: Language matters.
Van Rinsveld, Amandine; Dricot, Laurence; Guillaume, Mathieu UL et al

in Neuropsychologia (2017), 101

How do bilinguals solve arithmetic problems in each of their languages? We investigated this question by exploring the neural substrates of mental arithmetic in bilinguals. Critically, our population was ... [more ▼]

How do bilinguals solve arithmetic problems in each of their languages? We investigated this question by exploring the neural substrates of mental arithmetic in bilinguals. Critically, our population was composed of a homogeneous group of adults who were fluent in both of their instruction languages (i.e., German as first instruction language and French as second instruction language). Twenty bilinguals were scanned with fMRI (3T) while performing mental arithmetic. Both simple and complex problems were presented to disentangle memory retrieval occuring in very simple problems from arithmetic computation occuring in more complex problems. In simple additions, the left temporal regions were more activated in German than in French, whereas no brain regions showed additional activity in the reverse constrast. Complex additions revealed the reverse pattern, since the activations of regions for French surpassed the same computations in German and the extra regions were located predominantly in occipital regions. Our results thus highlight that highly proficient bilinguals rely on differential activation patterns to solve simple and complex additions in each of their languages, suggesting different solving procedures. The present study confirms the critical role of language in arithmetic problem solving and provides novel insights into how highly proficient bilinguals solve arithmetic problems. [less ▲]

Detailed reference viewed: 145 (13 UL)
Full Text
Peer Reviewed
See detailLeft cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers.
Lochy, Aliette UL; Van Reybroeck, Marie; Rossion, Bruno

in Proceedings of the National Academy of Sciences of the United States of America (2016), 113(30), 8544-9

Reading, one of the most important cultural inventions of human society, critically depends on posterior brain areas of the left hemisphere in proficient adult readers. In children, this left hemispheric ... [more ▼]

Reading, one of the most important cultural inventions of human society, critically depends on posterior brain areas of the left hemisphere in proficient adult readers. In children, this left hemispheric cortical specialization for letter strings is typically detected only after approximately 1 y of formal schooling and reading acquisition. Here, we recorded scalp electrophysiological (EEG) brain responses in 5-y-old (n = 40) prereaders presented with letter strings appearing every five items in rapid streams of pseudofonts (6 items per second). Within 2 min of recording only, letter strings evoked a robust specific response over the left occipito-temporal cortex at the predefined frequency of 1.2 Hz (i.e., 6 Hz/5). Interindividual differences in the amplitude of this electrophysiological response are significantly related to letter knowledge, a preschool predictor of later reading ability. These results point to the high potential of this rapidly collected behavior-free measure to assess reading ability in developmental populations. These findings were replicated in a second experiment (n = 26 preschool children), where familiar symbols and line drawings of objects evoked right-lateralized and bilaterally specific responses, respectively, showing the specificity of the early left hemispheric dominance for letter strings. Collectively, these findings indicate that limited knowledge of print in young children, before formal education, is sufficient to develop specialized left lateralized neuronal circuits, thereby pointing to an early onset and rapid impact of left hemispheric reentrant sound mapping on posterior cortical development. [less ▲]

Detailed reference viewed: 6 (1 UL)
Peer Reviewed
See detailNeural correlates of arithmetic problem solving in bilinguals: an fMRI study.
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Poster (2015, May)

Detailed reference viewed: 66 (1 UL)
Peer Reviewed
See detailArithmetic in the bilingual brain: an fMRI study
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Scientific Conference (2015, March)

Using fMRI we observed that solving addition and multiplication problems induced activation in several fronto-parietal regions in both German-French bilingual and French monolingual adults. However ... [more ▼]

Using fMRI we observed that solving addition and multiplication problems induced activation in several fronto-parietal regions in both German-French bilingual and French monolingual adults. However, during complex addition frontal regions showed systematically higher activation levels in bilinguals than monolinguals, both when bilinguals computed in German (math-acquisition language) and in French. [less ▲]

Detailed reference viewed: 61 (7 UL)
Full Text
Peer Reviewed
See detailA robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.
Lochy, Aliette UL; Van Belle, Goedele; Rossion, Bruno

in Neuropsychologia (2015), 66

Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to ... [more ▼]

Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading difficulties. [less ▲]

Detailed reference viewed: 11 (0 UL)
Peer Reviewed
See detailArithmetic in the Bilingual Brain: an fMRI study
Van Rinsveld, Amandine UL; Dricot, Laurence; Guillaume, Mathieu UL et al

Scientific Conference (2014, May)

How do bilinguals solve arithmetic problems in their different languages? We investigated this question with functional magnetic resonance imaging (fMRI) by exploring the neural substrates of arithmetic ... [more ▼]

How do bilinguals solve arithmetic problems in their different languages? We investigated this question with functional magnetic resonance imaging (fMRI) by exploring the neural substrates of arithmetic processing in bilinguals in comparison to monolinguals. Bilingual participants were highly proficient both in German and French as they attended primary school in German and secondary school and higher education in French. This bilingual combination is particularly interesting because the order of two-digit number words is inversed in these languages: decade-unit in French but unit-decade in German. 21 German-French bilinguals and 12 French-speaking monolinguals were scanned while performing different types of arithmetic problems: additions of different complexity levels (from simple to complex additions) and multiplication facts. We presented different types of operations in order to disentangle arithmetic computation from pure memory retrieval that occurs in very simple additions or multiplications. Arithmetic problems were presented via headsets in a verification paradigm and bilinguals performed the tasks in both languages. Results showed that all arithmetic tasks elicited a broad fronto-parietal network in both groups and for both of bilinguals’ language sessions. However, we observed that complex additions involved more left frontal activity (i.e. inferior frontal gyrus, anterior cingulate gyrus) in bilinguals than in monolinguals. It is important to notice that these frontal activation differences occurred both for the arithmetic acquisition language (i.e. German) and the second language (i.e. French). These BOLD differences between bilingual and monolingual participants were observed despite the fact that both groups solved the arithmetic problems with equivalent accuracy rates. Moreover, localization of the regions activated by complex additions in bilinguals differed from the typical activation pattern reported for mental arithmetic in recent meta-analyses (Arsalidou & Taylor, 2011). Taken together, our results indicate that highly proficient bilinguals rely on differential activation patterns than monolinguals to solve complex additions. The differences in left frontal activations might reflect different degrees of language-related automaticity when computing complex arithmetic problems. Executive functions that are necessary to control language context and access for bilinguals’ respective languages might also play a role. Further insights about the role of language in arithmetic solving process in bilingual and non-bilingual individuals will be discussed. [less ▲]

Detailed reference viewed: 344 (12 UL)
Peer Reviewed
See detailThe development of number symbol processing: A fast periodic visual stimulation study
Mejias, Sandrine; Rossion, Bruno; Schiltz, Christine UL

Poster (2014)

In our cultures the meaning of number symbols is acquired and reinforced through education. Accordingly, it is critical to understand how children become experts in the use of Arabic numbers (AN). Here ... [more ▼]

In our cultures the meaning of number symbols is acquired and reinforced through education. Accordingly, it is critical to understand how children become experts in the use of Arabic numbers (AN). Here, we used fast periodic visual stimulation (FPVS) combined with a repetition-suppression paradigm (Rossion & Boremanse, 2011) to measure rapidly and objectively the sensitivity to symbolic numerical stimuli of 6-to-12-y.o. children (n=20) and adults (n=11). Participants were presented four sequences: two of AN and two of AN-like sham stimuli. Half of the sequences consisted of different stimuli (“10”, “18”, “12”,...), the other half of same stimuli (“10”) presented repeatedly. Stimuli appeared at 3.5 items/second (fundamental frequency=3.5 Hz), for 60 seconds. We observed a large increase of the EEG response at 3.5 Hz (a steady-state visual-evoked potential; Regan, 1966) over parieto-occipital electrodes. This response was larger during different than same sequences, especially when participants saw real (vs. sham) AN. The amplitude of this specific response to numbers increased with children’s age. Moreover its location changed from posterior occipital electrodes in childhood to more lateral parietal electrodes in adulthood. These results indicate that FPVS of AN is a promising tool to study the sensitivity to numerical magnitude in children and adults. [less ▲]

Detailed reference viewed: 77 (3 UL)
Peer Reviewed
See detailDiscrimination of Numerosities in children studied by means of Fast Periodic Visual Stimulation
Mejias, Sandrine; Rossion, Bruno; Schiltz, Christine UL

Poster (2014)

We are constantly dealing with quantities in our environment. This ability to process numerical magnitude is present in infants (Izard et al., 2009), a variety of animal species (Flombaum et al., 2005 ... [more ▼]

We are constantly dealing with quantities in our environment. This ability to process numerical magnitude is present in infants (Izard et al., 2009), a variety of animal species (Flombaum et al., 2005) and in tribes with small number words lexicon (Pica et al., 2004). It implies that our brain is able to extract the total number of items in a scene, regardless of perceptual interference (non-numerical properties of the stimuli). However, this ability seems to be refined through development (Halberda et al., 2012), due to visual-perception maturation and/or educational environment, e.g. when learning arithmetic. Here, we measured rapidly and objectively 6-to-12-y.o. children’s sensitivity to (non-)symbolic numerical stimuli (dots or Arabic numbers), using fast periodic visual stimulation (FVPS) as implemented in a repetition-suppression paradigm (Rossion & Boremanse, 2011). Children were presented with stimuli appearing at 3.5 items/second (fundamental frequency=3.5 Hz), for 60 seconds. Half of the sequences consisted of different stimuli at every cycle of stimulation (e.g., “10”, “18”, “12”,...), the other half of sequences were composed of same stimuli (“10”) repeated throughout the whole sequence. We observed a large increase of the EEG response at the fundamental frequency (a steady-state visual evoked potential; Regan, 1966) over the lateral parieto-occipital electrodes sites. This response was reduced when the same stimulus was repeated, especially for symbolic stimuli. These results are correlated to children’s age and visual-perception, arithmetic and non-symbolic numerical abilities (L-POST, KRT, Panamath). They indicate that FPVS of (non-)symbolic numerosities is a promising tool to study children’s sensitivity to numerical magnitude. [less ▲]

Detailed reference viewed: 60 (6 UL)
Peer Reviewed
See detailHow the human brain discriminates numerosities: A steady-state visual-evoked potentials study
Mejias, Sandrine; Rossion, Bruno; Schiltz, Christine UL

Poster (2013, May 28)

This study aimed at measuring rapidly and objectively human adults' sensitivity to (non)symbolic numerical stimuli, using the steady-state visual-evoked potentials (1) response in the context of ... [more ▼]

This study aimed at measuring rapidly and objectively human adults' sensitivity to (non)symbolic numerical stimuli, using the steady-state visual-evoked potentials (1) response in the context of repetition suppression (2). It aimed to demonstrate the feasibility of the method and evaluate its potential to tap into the basic numerical representation systems that can be assumed to underlie symbolic and non-symbolic magnitude comparisons. Following a short duration experiment, we observed a large reduction of signal specifically at the 3.5 Hz response, over the occipito-temporo-parietal cortex. This reduction was greater for symbolic than non-symbolic control stimuli. This first observation of repetition suppression to fast periodic stimulation of symbolic and non-symbolic numerosities in the human brain offers a promising tool to study the sensitivity to numerosities in the human brain in adults, but also especially in children. [less ▲]

Detailed reference viewed: 24 (1 UL)
Peer Reviewed
See detailHow the human brain discriminates numerosities: A steady-state visual-evoked potentials study
Mejias, Sandrine; Rossion, Bruno; Schiltz, Christine UL

Poster (2013)

This study aimed at measuring rapidly and objectively human adults' sensitivity to (non)symbolic numerical stimuli, using the steady-state visual-evoked potentials (1) response in the context of ... [more ▼]

This study aimed at measuring rapidly and objectively human adults' sensitivity to (non)symbolic numerical stimuli, using the steady-state visual-evoked potentials (1) response in the context of repetition suppression (2). It aimed to demonstrate the feasibility of the method and evaluate its potential to tap into the basic numerical representation systems that can be assumed to underlie symbolic and non-symbolic magnitude comparisons. Following a short duration experiment, we observed a large reduction of signal specifically at the 3.5 Hz response, over the occipito-temporo-parietal cortex. This reduction was greater for symbolic than non-symbolic control stimuli. This first observation of repetition suppression to fast periodic stimulation of symbolic and non-symbolic numerosities in the human brain offers a promising tool to study the sensitivity to numerosities in the human brain in adults, but also especially in children. [less ▲]

Detailed reference viewed: 34 (7 UL)