References of "Roethlein, Nicola"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRegulation of vascular tone in animals overexpressing the sarcolemmal calcium pump.
Schuh, Kai; Quaschning, Thomas; Knauer, Sebastian et al

in The Journal of biological chemistry (2003), 278(42), 41246-52

The mechanisms governing vascular smooth muscle tone are incompletely understood. In particular, the role of the sarcolemmal calcium pump PMCA (plasma membrane calmodulin-dependent calcium ATPase), which ... [more ▼]

The mechanisms governing vascular smooth muscle tone are incompletely understood. In particular, the role of the sarcolemmal calcium pump PMCA (plasma membrane calmodulin-dependent calcium ATPase), which extrudes Ca2+ from the cytosol, and its importance compared with the sodium/calcium exchanger remain speculative. To test whether the PMCA is a regulator of vascular tone, we generated transgenic mice overexpressing the human PMCA4b under control of the arterial smooth muscle-specific SM22alpha promoter. This resulted in an elevated systolic blood pressure compared with littermate controls. In PMCA-overexpressing mice, endothelium-dependent relaxation of norepinephrine-preconstricted aortic rings to acetylcholine did not differ from wild type controls (76 +/- 8% versus 79 +/- 8% of maximum relaxation; n = 12, n.s.). De-endothelialized aortas of transgenic mice exhibited stronger maximum contraction to KCl (100 mmol/liter) compared with controls (86 +/- 6% versus 68 +/- 7% of reference KCl contraction at the beginning of the experiment; p <0.05). Preincubation of de-endothelialized vessels with the nitric oxide synthase (NOS) inhibitor l-NAME (l-N(G)-nitroarginine methyl ester) (10-5 mol/liter) resulted in a stronger contraction to KCl (p <0.05 versus without l-NAME), thus unmasking vasodilatory effects of inherent NO production. Maximum contraction to KCl after preincubation with l-NAME did not differ between PMCA mice and controls. In analogy to the results in PMCA-overexpressing mice, contractions of de-endothelialized aortas of neuronal NOS-deficient mice to KCl were significantly increased compared with controls (151 +/- 5% versus 131 +/- 6% of reference KCl contraction; p <0.05). In conclusion, our data suggest a model in which the sarcolemmal Ca2+ pump down-regulates activity of the vascular smooth muscle Ca2+/calmodulin-dependent neuronal NOS by a functionally relevant interaction. Therefore, the PMCA represents a novel regulator of vascular tone. [less ▲]

Detailed reference viewed: 93 (0 UL)
Full Text
Peer Reviewed
See detailInteraction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK.
Schuh, Kai; Uldrijan, Stjepan; Gambaryan, Stepan et al

in The Journal of biological chemistry (2003), 278(11), 9778-83

Spatial and temporal regulation of intracellular Ca(2+) is a key event in many signaling pathways. Plasma membrane Ca(2+)-ATPases (PMCAs) are major regulators of Ca(2+) homeostasis and bind to PDZ (PSD-95 ... [more ▼]

Spatial and temporal regulation of intracellular Ca(2+) is a key event in many signaling pathways. Plasma membrane Ca(2+)-ATPases (PMCAs) are major regulators of Ca(2+) homeostasis and bind to PDZ (PSD-95/Dlg/ZO-1) domains via their C termini. Various membrane-associated guanylate kinase family members have been identified as interaction partners of PMCAs. In particular, SAP90/PSD95, PSD93/chapsyn-110, SAP97, and SAP102 all bind to the C-terminal tails of PMCA "b" splice variants. Additionally, it has been demonstrated that PMCA4b interacts with neuronal nitric-oxide synthase and that isoform 2b interacts with Na(+)/H(+) exchanger regulatory factor 2, both via a PDZ domain. CASK (calcium/calmodulin-dependent serine protein kinase) contains a calmodulin-dependent protein kinase-like domain followed by PDZ, SH3, and guanylate kinase-like domains. In adult brain CASK is located at neuronal synapses and interacts with various proteins, e.g. neurexin and Veli/LIN-7. In kidney it is localized to renal epithelia. Surprisingly, interaction with the Tbr-1 transcription factor, nuclear transport, binding to DNA T-elements (in a complex with Tbr-1), and transcriptional competence has been shown. Here we show that the C terminus of PMCA4b binds to CASK and that both proteins co-precipitate from brain and kidney tissue lysates. Immunofluorescence staining revealed co-expression of PMCA, CASK, and calbindin-d-28K in distal tubuli of rat kidney sections. To test if physical interaction of both proteins results in functional consequences we constructed a T-element-dependent reporter vector and investigated luciferase activity in HEK293 lysates, previously co-transfected with PMCA4b expression and control vectors. Expression of wild-type PMCA resulted in an 80% decrease in T-element-dependent transcriptional activity, whereas co-expression of a point-mutated PMCA, with nearly eliminated Ca(2+) pumping activity, had only a small influence on regulation of transcriptional activity. These results provide evidence of a new direct Ca(2+)-dependent link from the plasma membrane to the nucleus. [less ▲]

Detailed reference viewed: 97 (1 UL)