References of "Rod, Alexia 50008937"
     in
Bookmark and Share    
See detailGeneric Helical Liquids: Theory & Applications
Rod, Alexia UL; Dolcetto, Giacomo UL; Rachel, Stephan et al

Poster (2016, August 23)

Detailed reference viewed: 55 (17 UL)
Full Text
Peer Reviewed
See detailTransport through a quantum spin Hall antidot as a spectroscopic probe of spin textures
Rod, Alexia UL; Dolcetto, Giacomo UL; Rachel, Stephan et al

in Physical Review B (2016), 94

We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial ... [more ▼]

We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial spin symmetry. Spin-non-conservation allows additional scattering processes which change the transport properties profoundly. We start from an analytical model for noninteracting transport, which we also compare with a numerical tight-binding simulation. We then extend this model by including Coulomb repulsion on the antidot, and we study the transport in the Coulomb-blockade limit. We investigate sequential tunneling and cotunneling regimes, and we find that the current-voltage characteristic allows a spectroscopic measurement of the edge-state spin textures. [less ▲]

Detailed reference viewed: 105 (10 UL)
See detailProbing the spin texture of generic helical edge states with an antidot
Rod, Alexia UL; Dolcetto, Giacomo UL; Rachel, Stephan et al

Scientific Conference (2016, March 07)

Detailed reference viewed: 31 (9 UL)
Full Text
Peer Reviewed
See detailSpin texture of generic helical edge states
Rod, Alexia UL; Schmidt, Thomas UL; Rachel, Stephan

in Physical Review B (2015), 91

We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations ... [more ▼]

We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations of topological insulators, we show that in all cases the generic behavior of a momentum-dependent rotation of the spin quantization axis is realized. Here we establish this mechanism also for disk geometries with continuous rotational symmetry. Finally, we demonstrate that the rotation of spin-quantization axis remains intact for arbitrary geometries, i.e., in the absence of any continuous symmetry. We also calculate the dependence of this rotation on the model and material parameters. Finally, we propose a spectroscopy measurement which should directly reveal the rotation of the spin-quantization axis of the helical edge states. [less ▲]

Detailed reference viewed: 86 (19 UL)