References of "Preciat Gonzalez, German Andres 50014893"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease
Noronha, Alberto UL; Modamio Chamarro, Jennifer UL; Jarosz, Yohan UL et al

in Nucleic Acids Research (2018)

A multitude of factors contribute to complex diseases and can be measured with ‘omics’ methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic ... [more ▼]

A multitude of factors contribute to complex diseases and can be measured with ‘omics’ methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic Human (VMH, www.vmh.life) database encapsulating current knowledge of human metabolism within five interlinked resources ‘Human metabolism’, ‘Gut microbiome’, ‘Disease’, ‘Nutrition’, and ‘ReconMaps’. The VMH captures 5180 unique metabolites, 17 730 unique reactions, 3695 human genes, 255 Mendelian diseases, 818 microbes, 632 685 microbial genes and 8790 food items. The VMH’s unique features are (i) the hosting of the metabolic reconstructions of human and gut microbes amenable for metabolic modeling; (ii) seven human metabolic maps for data visualization; (iii) a nutrition designer; (iv) a user-friendly webpage and application-programming interface to access its content; (v) user feedback option for community engagement and (vi) the connection of its entities to 57 other web resources. The VMH represents a novel, interdisciplinary database for data interpretation and hypothesis generation to the biomedical community. [less ▲]

Detailed reference viewed: 115 (19 UL)
Full Text
Peer Reviewed
See detailRecon3D enables a three-dimensional view of gene variation in human metabolism.
Brunk, Elizabeth; Sahoo, Swagatika; Zielinski, Daniel C. et al

in Nature biotechnology (2018), 36(3), 272-281

Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein ... [more ▼]

Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D represents the most comprehensive human metabolic network model to date, accounting for 3,288 open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a unique resource for investigating molecular mechanisms of human metabolism. Recon3D is available at http://vmh.life. [less ▲]

Detailed reference viewed: 148 (4 UL)
Full Text
Peer Reviewed
See detailComparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D
Preciat Gonzalez, German Andres UL; El Assal, Lemmer UL; Noronha, Alberto UL et al

in Journal of Cheminformatics (2017)

The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a ... [more ▼]

The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice. [less ▲]

Detailed reference viewed: 119 (3 UL)