References of "Pivkin, Igor V"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDeep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition
Buetti-Dinh, Antoine; Galli, Vanni; Bellenberg, Sören et al

in Biotechnology Reports (2019)

Background Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. Methods The ability of deep neural ... [more ▼]

Background Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. Methods The ability of deep neural networks versus human experts to classify microscopy images was tested on biofilm colonization patterns formed on sulfide minerals composed of up to three different bioleaching bacterial species attached to chalcopyrite sample particles. Results A low number of microscopy images per category (<600) was sufficient for highly efficient computational analysis of the biofilm's bacterial composition. The use of deep neural networks reached an accuracy of classification of ∼90% compared to ∼50% for human experts. Conclusions Deep neural networks outperform human experts’ capacity in characterizing bacterial biofilm composition involved in the degradation of chalcopyrite. This approach provides an alternative to standard, time-consuming biochemical methods. [less ▲]

Detailed reference viewed: 36 (8 UL)
Full Text
Peer Reviewed
See detailAutomated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
Bellenberg, Soren; Buetti-Dinh, Antoine; Galli, Vanni et al

in Applied and environmental microbiology (2018), 84(20),

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal ... [more ▼]

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds.IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans. [less ▲]

Detailed reference viewed: 20 (4 UL)
Full Text
Peer Reviewed
See detailMulti-omics reveal the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum(T).
Christel, Stephan; Herold, Malte UL; Bellenberg, Soren et al

in Applied and environmental microbiology (2017)

Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as ... [more ▼]

Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of this model species' type strain is available, limiting the possibilities to investigate the strategies and adaptations Leptospirillum ferriphilum(T) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum(T) DSM 14647 obtained by PacBio SMRT long read sequencing for use as a high quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as substrate and bioleaching cultures containing chalcopyrite (CuFeS2). Leptospirillum ferriphilum(T) adaptations to growth on chalcopyrite included a possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron-oxidizers in the context of acidic and metal rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum(T) coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on Leptospirillum ferriphilum(T) adaptation strategies to growth on the copper mineral chalcopyrite. This data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction. [less ▲]

Detailed reference viewed: 46 (1 UL)