Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

The Gamma Stein equation and non-central de Jong theorems Döbler, Christian ; Peccati, Giovanni in Bernoulli (in press) Detailed reference viewed: 102 (7 UL)Concentration bounds for geometric Poisson functionals: logarithmic Sobolev inequalities revisited Peccati, Giovanni ; in Electronic Journal of Probability (in press) Detailed reference viewed: 92 (10 UL)Fourth moment theorems on the Poisson space: analytic statements via product formulae Döbler, Christian ; Peccati, Giovanni in Electronic Communications in Probability (in press) Detailed reference viewed: 37 (3 UL)The fourth moment theorem on the Poisson space Döbler, Christian ; Peccati, Giovanni in Annals of Probability (in press) Detailed reference viewed: 191 (18 UL)Limit theorems for symmetric U-statistics using contractions Döbler, Christian ; Peccati, Giovanni E-print/Working paper (2018) Detailed reference viewed: 49 (1 UL)Concentration of the Intrinsic Volumes of a Convex Body ; ; Nourdin, Ivan et al E-print/Working paper (2018) Detailed reference viewed: 15 (0 UL)Sojourn time dimensions of fractional Brownian motion Nourdin, Ivan ; Peccati, Giovanni ; E-print/Working paper (2018) Detailed reference viewed: 25 (0 UL)New Kolmogorov bounds for functionals of binomial point processes Peccati, Giovanni ; in Annals of Applied Probability (2017), 27(4), 1992-20131 Detailed reference viewed: 68 (4 UL)Nodal Statistics of Planar Random Waves Nourdin, Ivan ; Peccati, Giovanni ; Rossi, Maurizia E-print/Working paper (2017) Detailed reference viewed: 50 (1 UL)Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner Formula ; Nourdin, Ivan ; Peccati, Giovanni in Annals of Applied Probability (2017), 27(1), 1-47 Intrinsic volumes of convex sets are natural geometric quantities that also play important roles in applications, such as linear inverse problems with convex constraints, and constrained statistical ... [more ▼] Intrinsic volumes of convex sets are natural geometric quantities that also play important roles in applications, such as linear inverse problems with convex constraints, and constrained statistical inference. It is a well-known fact that, given a closed convex cone $C\subset \mathbb{R}^d$, its conic intrinsic volumes determine a probability measure on the finite set $\{0,1,...d\}$, customarily denoted by $\mathcal{L}(V_C)$. The aim of the present paper is to provide a Berry-Esseen bound for the normal approximation of ${\cal L}(V_C)$, implying a general quantitative central limit theorem (CLT) for sequences of (correctly normalised) discrete probability measures of the type $\mathcal{L}(V_{C_n})$, $n\geq 1$. This bound shows that, in the high-dimensional limit, most conic intrinsic volumes encountered in applications can be approximated by a suitable Gaussian distribution. Our approach is based on a variety of techniques, namely: (1) Steiner formulae for closed convex cones, (2) Stein's method and second order Poincar\'e inequality, (3) concentration estimates, and (4) Fourier analysis. Our results explicitly connect the sharp phase transitions, observed in many regularised linear inverse problems with convex constraints, with the asymptotic Gaussian fluctuations of the intrinsic volumes of the associated descent cones. In particular, our findings complete and further illuminate the recent breakthrough discoveries by Amelunxen, Lotz, McCoy and Tropp (2014) and McCoy and Tropp (2014) about the concentration of conic intrinsic volumes and its connection with threshold phenomena. As an additional outgrowth of our work we develop total variation bounds for normal approximations of the lengths of projections of Gaussian vectors on closed convex sets. [less ▲] Detailed reference viewed: 99 (5 UL)A Stein deficit for the logarithmic Sobolev inequality ; Nourdin, Ivan ; Peccati, Giovanni in Science China Mathematics (2017), 60 Detailed reference viewed: 59 (3 UL)Quantitative de Jong theorems in any dimension Döbler, Christian ; Peccati, Giovanni in Electronic Journal of Probability (2017), 22 Detailed reference viewed: 154 (19 UL)Phase singularities in complex arithmetic random waves ; Nourdin, Ivan ; Peccati, Giovanni et al E-print/Working paper (2016) Detailed reference viewed: 68 (4 UL)Classical and free fourth moment theorems: universality and thresholds Nourdin, Ivan ; Peccati, Giovanni ; et al in Journal of Theoretical Probability (2016), 29(2), 653-680 Detailed reference viewed: 85 (8 UL)Quantitative stable limit theorems on the Wiener space Nourdin, Ivan ; ; Peccati, Giovanni in Annals of Probability (2016), 44(1), 1-41 Detailed reference viewed: 109 (11 UL)Stochastic analysis for Poisson point processes: Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry Peccati, Giovanni ; Book published by Springer (2016) Detailed reference viewed: 208 (3 UL)Strong asymptotic independence on Wiener chaos Nourdin, Ivan ; ; Peccati, Giovanni in Proceedings of the American Mathematical Society (2016), 144(2), 875-886 Detailed reference viewed: 124 (12 UL)Multidimensional limit theorems for homogeneous sums : a general transfer principle Nourdin, Ivan ; Peccati, Giovanni ; et al in ESAIM: Probability and Statistics = Probabilité et statistique : P & S (2016), 20 Detailed reference viewed: 41 (1 UL)Non-universality of nodal length distribution for arithmetic random waves ; Peccati, Giovanni ; Rossi, Maurizia et al in Geometric & Functional Analysis (2016), 26(3), 926-960 Detailed reference viewed: 72 (18 UL)Multivariate Gaussian approxi- mations on Markov chaoses Campese, Simon ; Nourdin, Ivan ; Peccati, Giovanni et al in Electronic Communications in Probability (2016), 21 Detailed reference viewed: 131 (7 UL) |
||