References of "Overy, A. R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUniaxial negative thermal expansion and metallophilicity in Cu3[Co(CN)6]
Sapnik, A. F.; Liu, X.; Böstrom, H. L. B. et al

in Journal of Solid State Chemistry (2018), 258

We report the synthesis and structural characterisation of the molecular framework copper(I) hexacyanocobaltate(III), Cu3[Co(CN)6], which we find to be isostructural to H3[Co(CN)6] and the colossal ... [more ▼]

We report the synthesis and structural characterisation of the molecular framework copper(I) hexacyanocobaltate(III), Cu3[Co(CN)6], which we find to be isostructural to H3[Co(CN)6] and the colossal negative thermal expansion material Ag3[Co(CN)6]. Using synchrotron X-ray powder diffraction measurements, we find strong positive and negative thermal expansion behaviour respectively perpendicular and parallel to the trigonal crystal axis: α = 25.4(5) MK a −1 and α = − 43.5(8) MK c −1. These opposing effects collectively result in a volume expansivity α = 7.4(11) MK V −1 that is remarkably small for an anisotropic molecular framework. This thermal response is discussed in the context of the behaviour of the analogous H- and Ag-containing systems. We make use of density-functional theory with many-body dispersion interactions (DFT + MBD) to demonstrate that Cu+…Cu+ metallophilic (‘cuprophilic’) interactions are significantly weaker in Cu3[Co(CN)6] than Ag+…Ag+ interactions in Ag3[Co(CN)6], but that this lowering of energy scale counterintuitively translates to a more moderate—rather than enhanced—degree of structural flexibility. The same conclusion is drawn from consideration of a simple GULP model, which we also present here. Our results demonstrate that strong interactions can actually be exploited in the design of ultra-responsive materials if those interactions are set up to act in tension. [less ▲]

Detailed reference viewed: 105 (1 UL)