References of "Nurmik, Martin 50026215"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells
Ullmann, Pit; Nurmik, Martin UL; Begaj, Rubens UL et al

in Cells (2019), 8(6),

Colorectal cancer (CRC), the second most common cause of cancer mortality in theWestern world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as ... [more ▼]

Colorectal cancer (CRC), the second most common cause of cancer mortality in theWestern world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of di erent approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic di erences between TICs and less aggressive di erentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they a ect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced e ects on colon TICs. [less ▲]

Detailed reference viewed: 45 (5 UL)
Full Text
Peer Reviewed
See detailTumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity
Ullmann, Pit UL; Nurmik, Martin UL; Schmitz, Martine UL et al

in Cancer Letters (2019), 450

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including ... [more ▼]

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches. [less ▲]

Detailed reference viewed: 67 (0 UL)
Full Text
Peer Reviewed
See detailIn search of definitions: Cancer-associated fibroblasts and their markers
Nurmik, Martin UL; Ullmann, Pit UL; Rodriguez, Fabien UL et al

in International Journal of Cancer (2019)

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually ... [more ▼]

The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically been carried based on the expression of various "CAF markers", such as fibroblast activation protein alpha (FAP) and alpha smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential future avenues for CAF identification and targeting. [less ▲]

Detailed reference viewed: 44 (0 UL)