References of "Neumann, M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEstrogen effects in the myocardium: inhibition of NF-kappaB DNA binding by estrogen receptor-alpha and -beta.
Pelzer, T.; Neumann, M.; de Jager, T. et al

in Biochemical and biophysical research communications (2001), 286(5), 1153-7

We have previously shown that estrogen effects in the heart include direct hormone effects on the myocardium. In a recent study we found that one beneficial effect of estradiol on the myocardium is the ... [more ▼]

We have previously shown that estrogen effects in the heart include direct hormone effects on the myocardium. In a recent study we found that one beneficial effect of estradiol on the myocardium is the inhibition of apoptosis in cardiac myocytes. This effect was associated with a reduction of NF-kappaB activity. In the present study we have analyzed the functional mechanism of NF-kappaB inhibition in the myocardium by estrogen receptors-alpha and -beta. Despite the previous finding that 17-beta-estradiol (10 nM) inhibited the staurosporine-induced binding of p65/p50 NF-kappaB complexes to their cognate DNA elements in cultured rat cardiac myocytes, myocyte extracts showed no change in expression or cellular localization of p65, p50, and IkappaB upon staurosporine or estradiol treatment. Addition of either estrogen receptor-alpha or estrogen receptor-beta as recombinant protein was sufficient to inhibit staurosporine-dependent p65/p50 DNA binding in cardiac myocytes. 17-beta-Estradiol inhibits staurosporine-induced p65/p50 DNA binding associated with apoptotic cell death of cardiac myocytes via estrogen receptors-alpha and -beta. This is not associated with changes in p65, p50 and IkappaB expression or subcellular localization. Thus, inhibition of NF-kappaB activity by estrogenic compounds might inhibit NF-kappaB dependent gene expression such as pro-inflammatory cytokines in the myocardium. [less ▲]

Detailed reference viewed: 62 (0 UL)
Full Text
Peer Reviewed
See detail17beta-estradiol prevents programmed cell death in cardiac myocytes.
Pelzer, T.; Neumann, M.; deJager, T. et al

in Biochemical and biophysical research communications (2000), 268(1), 192-200

The cardioprotective effects of estrogens are clearly established. However, the underlying mechanisms are poorly understood. Because programmed cell death (apoptosis) probably contributes to the loss of ... [more ▼]

The cardioprotective effects of estrogens are clearly established. However, the underlying mechanisms are poorly understood. Because programmed cell death (apoptosis) probably contributes to the loss of cardiac myocytes in heart failure and because estrogens prevent apoptosis in breast cancer cells, we investigated whether the loss of cardiac myocytes by programmed cell death could be prevented by physiological doses of 17beta-estradiol. Apoptosis of cultured cardiac myocytes was induced by staurosporine. 17beta-estradiol (10 nM) had an antiapoptotic effect as determined by morphological analysis, vital staining using the Hoechst dye 33342 and terminal transferase dUTP nick-end labeling (TUNEL). As a potential mechanism for the antiapoptotic effect of 17beta-estradiol we found a reduced activity of the ICE-like protease caspase-3 in hormone-treated myocytes. Furthermore, inhibition of apoptosis by estradiol was associated with a reduced activity of NF-kappaB transcription factors, particularly p65/RelA and p50. To our knowledge, these data provide the first indication that 17beta-estradiol in physiological concentrations inhibits apoptosis in cardiac myocytes. The antiapoptotic effect of estrogens might contribute to the known cardioprotective effect of estrogens and provides a starting point for the development of future treatment options. [less ▲]

Detailed reference viewed: 111 (0 UL)