References of "Neubüser, A"
     in
Bookmark and Share    
Peer Reviewed
See detailMolecular basis for skeletal variation: insights from developmental genetic studies in mice.
Kappen, C.; Neubuser, A.; Balling, Rudi UL et al

in Birth Defects Research. Part B, Developmental and Reproductive Toxicology (2007), 80(6), 425-50

Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of ... [more ▼]

Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of possible alterations that could explain variations in skeletal element number, shape or size. Environmental agents that induce variations, such as teratogens, likely interact with the molecular pathways that regulate skeletal development. [less ▲]

Detailed reference viewed: 104 (0 UL)
Peer Reviewed
See detailPax genes and organogenesis: Pax9 meets tooth development.
Peters, H.; Neubuser, A.; Balling, Rudi UL

in European Journal of Oral Sciences (1998), 106 Suppl 1

Pax genes encode a family of transcription factors that play key roles during embryogenesis. They are required for the development of a variety of organs including the nervous and muscular system ... [more ▼]

Pax genes encode a family of transcription factors that play key roles during embryogenesis. They are required for the development of a variety of organs including the nervous and muscular system, skeleton, eye, ear, kidney, thymus, and pancreas. Whereas the developmental roles of many of the nine known Pax genes have been analyzed in great detail, a functional analysis of Pax9 has just begun. During mouse embryogenesis, Pax9 exhibits a highly specific expression pattern in derivatives of the foregut endoderm, somites, limb mesenchyme, midbrain, and the cephalic neural crest. In the mandibular arch mesenchyme, the expression of Pax9 marks the prospective sites of tooth development prior to any morphological signs of odontogenesis and is maintained in the developing tooth mesenchyme thereafter. To understand the function of Pax9 during mouse embryogenesis, we recently have created a null allele by gene targeting. Preliminary analyses show that Pax9 is essential for the formation of teeth, and we conclude that Pax9 is required for tooth development to proceed beyond the bud stage. Here, we briefly summarize our current knowledge about Pax genes and introduce Pax9 to the growing family of factors which are involved in tooth development. [less ▲]

Detailed reference viewed: 72 (0 UL)
Peer Reviewed
See detailPax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities.
Peters, H.; Neubuser, A.; Kratochwil, K. et al

in Genes & Development (1998), 12(17), 2735-47

Pax genes have been shown to play important roles in mammalian development and organogenesis. Pax9, a member of this transcription factor family, is expressed in somites, pharyngeal pouches, mesenchyme ... [more ▼]

Pax genes have been shown to play important roles in mammalian development and organogenesis. Pax9, a member of this transcription factor family, is expressed in somites, pharyngeal pouches, mesenchyme involved in craniofacial, tooth, and limb development, as well as other sites during mouse embryogenesis. To analyze its function in vivo, we generated Pax9 deficient mice and show that Pax9 is essential for the development of a variety of organs and skeletal elements. Homozygous Pax9-mutant mice die shortly after birth, most likely as a consequence of a cleft secondary palate. They lack a thymus, parathyroid glands, and ultimobranchial bodies, organs which are derived from the pharyngeal pouches. In all limbs, a supernumerary preaxial digit is formed, but the flexor of the hindlimb toes is missing. Furthermore, craniofacial and visceral skeletogenesis is disturbed, and all teeth are absent. In Pax9-deficient embryos tooth development is arrested at the bud stage. At this stage, Pax9 is required for the mesenchymal expression of Bmp4, Msx1, and Lef1, suggesting a role for Pax9 in the establishment of the inductive capacity of the tooth mesenchyme. In summary, our analysis shows that Pax9 is a key regulator during the development of a wide range of organ primordia. [less ▲]

Detailed reference viewed: 60 (0 UL)
Peer Reviewed
See detailIsolation of the Pax9 cDNA from adult human esophagus.
Peters, H.; Schuster, G.; Neubuser, A. et al

in Mammalian Genome : Official Journal of the International Mammalian Genome Society (1997), 8(1), 62-4

Detailed reference viewed: 86 (0 UL)
Peer Reviewed
See detailThe Genetics of Vertebral Column Development
Peters, H; Neubüser, A; Wallin, J et al

in Thiel; Klug (Eds.) Methods in Developmental Toxicology (1997)

Detailed reference viewed: 33 (0 UL)
Peer Reviewed
See detailAntagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation.
Neubuser, A.; Peters, H.; Balling, Rudi UL et al

in Cell (1997), 90(2), 247-55

Vertebrate organogenesis is initiated at sites that are often morphologically indistinguishable from the surrounding region. Here we have identified Pax9 as a marker for prospective tooth mesenchyme prior ... [more ▼]

Vertebrate organogenesis is initiated at sites that are often morphologically indistinguishable from the surrounding region. Here we have identified Pax9 as a marker for prospective tooth mesenchyme prior to the first morphological manifestation of odontogenesis. We provide evidence that the sites of Pax9 expression in the mandibular arch are positioned by the combined activity of two signals, one (FGF8) that induces Pax9 expression and the other (BMP2 and BMP4) that prevents this induction. Thus it appears that the position of the teeth is determined by a combination of two different types of signaling molecules produced in wide but overlapping domains rather than by a single localized inducer. We suggest that a similar mechanism may be used for specifying the sites of development of other organs. [less ▲]

Detailed reference viewed: 52 (0 UL)
Peer Reviewed
See detailPax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation.
Wallin, J.; Eibel, H.; Neubuser, A. et al

in Development (1996), 122(1), 23-30

Pax1 is a transcriptional regulatory protein expressed during mouse embryogenesis and has been shown to have an important function in vertebral column development. Expression of Pax1 mRNA in the embryonic ... [more ▼]

Pax1 is a transcriptional regulatory protein expressed during mouse embryogenesis and has been shown to have an important function in vertebral column development. Expression of Pax1 mRNA in the embryonic thymus has been reported previously. Here we show that Pax1 protein expression in thymic epithelial cells can be detected throughout thymic development and in the adult. Expression starts in the early endodermal epithelium lining the foregut region and includes the epithelium of the third pharyngeal pouch, a structure giving rise to part of the thymus epithelium. In early stages of thymus development a large proportion of thymus cells expresses Pax1. With increasing age, the proportion of Pax1-expressing cells is reduced and in the adult mouse only a small fraction of cortical thymic stromal cells retains strong Pax1 expression. Expression of Pax1 in thymus epithelium is necessary for establishing the thymus microenvironment required for normal T cell maturation. Mutations in the Pax-1 gene in undulated mice affect not only the total size of the thymus but also the maturation of thymocytes. The number of thymocytes is reduced about 2- to 5-fold, affecting mainly the CD4+8+ immature and CD4+ mature thymocyte subsets. The expression levels of major thymocyte surface markers remains unchanged with the exception of Thy-1 which was found to be expressed at 3- to 4-fold higher levels. [less ▲]

Detailed reference viewed: 38 (1 UL)
Peer Reviewed
See detailDevelopment of the vertebral column: Morphogenesis and genes
Wilting, J; Müller, T S; Ebensperger, C et al

in Vorgel, R; Fanghaenel, J; Giebel, J (Eds.) Aspects of Teratologie (1996)

Detailed reference viewed: 73 (0 UL)
Peer Reviewed
See detailPax genes and skeletal development.
Balling, Rudi UL; Helwig, U.; Nadeau, J. et al

in Annals of the New York Academy of Sciences (1996), 785

Detailed reference viewed: 41 (0 UL)
Peer Reviewed
See detailExpression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm.
Muller, Tim UL; Ebensperger, C.; Neubuser, A. et al

in Developmental Biology (1996), 178(2), 403-17

Pax1 and Pax9 represent a subfamily of paired-box-containing genes. In vertebrates, Pax1 and Pax9 transcripts have been found specifically in mesodermal tissues and the pharyngeal endoderm. Pax1 ... [more ▼]

Pax1 and Pax9 represent a subfamily of paired-box-containing genes. In vertebrates, Pax1 and Pax9 transcripts have been found specifically in mesodermal tissues and the pharyngeal endoderm. Pax1 expression in the sclerotomes has been shown to be indispensable for proper formation of the axial skeleton, but expression of Pax1 in the endoderm has not been studied in detail. We have cloned the chick homologue of the murine Pax9 gene. Our results show that transcripts of Pax1 and Pax9 are first detectable in the prospective foregut endoderm of headfold-stage avian embryos. Endodermal expression correlates with the highly proliferative zones of the folding foregut and evaginating pharyngeal pouches. In later stages, Pax1 and Pax9 are expressed in overlapping but distinct patterns within the developing sclerotomes and limb buds. From grafting experiments we conclude that activation of pharyngeal Pax1 and Pax9 expression is an intrinsic property of the endoderm, not requiring midline structures or head mesoderm. In contrast, notochord is required to induce Pax1 in competent sclerotomes. Here we show that in vitro there is a cranio-caudal gradient of inductive capacity in the notochord. This coincides with the graded expression of Pax1 and Pax9 along the cranio-caudal axis in 2- to 3-day-old embryos. Furthermore, paraxial head mesoderm shows no competence to express Pax1. Finally, in vitro we find counteracting influences on notochord signaling by lateral tissues (lateral plate, intermediate mesoderm), leading to an inhibition of Sonic hedgehog (Shh) expression in notochord and floor plate, as well as Pax1 and Pax9 expression in sclerotomes. Taken together, our results demonstrate that different mechanisms regulate expression of Pax1 and Pax9 in foregut and sclerotome, but suggest a common function for both genes in the two tissues that is promoting proliferation and preventing fusion of neighboring blastemas. [less ▲]

Detailed reference viewed: 59 (0 UL)
Peer Reviewed
See detailPax genes and sclerotome induction
Balling, Rudi UL; Neubüser, A; Christ, B

in Seminars in Cell & Developmental Biology (1996), (7), 129-136

Detailed reference viewed: 36 (2 UL)
Peer Reviewed
See detailCharacterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1.
Neubuser, A.; Koseki, H.; Balling, Rudi UL

in Developmental Biology (1995), 170(2), 701-16

Pax9, a recently identified mouse paired-box-containing gene, is highly homologous to Pax1 and belongs to the same subfamily as Pax1, Hup48, PAX9, and pox meso. Two overlapping cDNA clones spanning the ... [more ▼]

Pax9, a recently identified mouse paired-box-containing gene, is highly homologous to Pax1 and belongs to the same subfamily as Pax1, Hup48, PAX9, and pox meso. Two overlapping cDNA clones spanning the entire coding region of Pax9 were isolated and sequenced. A comparison of the Pax1 and -9 protein sequences reveals a high degree of similarity even outside the paired box, while the carboxy-terminus of the two proteins diverges completely. We demonstrate that Pax9 can bind to the e5 sequence from the Drosophila even skipped promoter, which is also recognized by Pax1. We analyzed the expression of Pax9 during embryogenesis of wildtype, Undulated short-tail (Uns), and Danforth's short tail (Sd) mice. In wildtype embryos Pax9 is expressed in the pharyngeal pouches and their derivatives, the developing vertebral column, the tail, the head, and the limbs. Expression of Pax9 is unaffected in Uns embryos, in which the Pax1 gene is deleted, arguing that expression of Pax9 is not dependent on Pax1. The expression of Pax9 is lost in the caudal part of Sd homozygous embryos, suggesting that expression of Pax9 in the vertebral column is dependent on the notochord. These results indicate that both Pax9 and -1 may act in parallel during morphogenesis of the vertebral column. [less ▲]

Detailed reference viewed: 49 (0 UL)