References of "Nazarov, Petr"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity
Ullmann, Pit UL; Nurmik, Martin UL; Schmitz, Martine UL et al

in Cancer Letters (2019), 450

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including ... [more ▼]

Cancer stem cells, also known as tumor-initiating cells (TICs), are a population of aggressive and self-renewing cells that are responsible for the initiation and progression of many cancers, including colorectal carcinoma. Intratumoral hypoxia, i.e. reduced oxygen supply following uncontrolled proliferation of cancer cells, is thought to support TIC activity by inducing specific hypoxia-responsive mechanisms that are not yet entirely understood. Using previously established and fully characterized patient-derived TIC cultures, we could observe increased sphere and colony formation under hypoxic conditions. Mechanistically, microRNA (miRNA)-profiling experiments allowed us to identify miR-215 as one of the main hypoxia-induced miRNAs in primary colon TICs. Through stable overexpression of miR-215, followed by a set of functional in vitro and in vivo investigations, miR-215 was pinpointed as a negative feedback regulator, working against the TIC-promoting effects of hypoxia. Furthermore, we could single out LGR5, a bona fide marker of non-neoplastic intestinal stem cells, as a downstream target of hypoxia/miR-215 signaling. The strong tumor- and TIC-suppressor potential of miR-215 and the regulatory role of the hypoxia/miR-215/LGR5 axis may thus represent interesting points of attack for the development of innovative anti-CSC therapy approaches. [less ▲]

Detailed reference viewed: 67 (0 UL)
Full Text
Peer Reviewed
See detailCrosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines
Rolvering, Catherine UL; Zimmer, Andreas; Kozar, Ines UL et al

in BBA Molecular Cell Research (2017)

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in ... [more ▼]

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition. [less ▲]

Detailed reference viewed: 141 (21 UL)
Full Text
Peer Reviewed
See detailInsights into ligand stimulation effects on gastro-intestinal stromal tumors signalling.
Bahlawane, Christelle; Schmitz, Martine UL; Letellier, Elisabeth UL et al

in Cell Signal (2017)

Mutations in KIT or PDGFRA are responsible for >85% of gastrointestinal stromal tumors. The introduction of imatinib in the GIST therapy scheme revolutionized the patient outcome. Unfortunately, the ... [more ▼]

Mutations in KIT or PDGFRA are responsible for >85% of gastrointestinal stromal tumors. The introduction of imatinib in the GIST therapy scheme revolutionized the patient outcome. Unfortunately, the therapy allows the disease stabilization instead of curation. Furthermore the resistance to the inhibitor arises in most cases within two first years of therapy. A thorough investigation of the signalling pathways activated by the major PDGFRA and KIT mutants encountered in the GIST landscape allowed to identify striking differences between the two receptor tyrosine kinases. PDGFRA mutants were not responsive to their ligand, PDGFAA, and displayed a high constitutive kinase activity. In contrast, all KIT mutants retained, in addition to their constitutive activation, the ability to be stimulated by their ligand. Kit mutants displayed a lower intrinsic kinase activity relative to PDGFRA mutants, while the KIT Exon 11 deletion mutant exhibited the highest intrinsic kinase activity among KIT mutants. At the transcriptomic level, the MAPK pathway was established as the most prominent activated pathway, which is commonly up-regulated by all PDGFRA and KIT mutants. Inhibition of this pathway, using the MEK inhibitor PD0325901, reduced the proliferation of GIST primary cells at nanomolar concentrations. Altogether, our data demonstrate the high value of MEK inhibitors for combination therapy in GIST treatment and more importantly the interest of evaluating the SCF expression profile in GIST patients presenting KIT mutations. [less ▲]

Detailed reference viewed: 168 (15 UL)
Full Text
Peer Reviewed
See detailData on quantification of signaling pathways activated by KIT and PDGFRA mutants.
Bahlawane, Christelle; Schmitz, Martine UL; Letellier, Elisabeth UL et al

in Data in Brief (2016)

The present data are related to the article entitled "Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling" (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot ... [more ▼]

The present data are related to the article entitled "Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling" (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016) [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST) were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells). Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf). We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so. [less ▲]

Detailed reference viewed: 81 (3 UL)
Full Text
Peer Reviewed
See detailAnalysis of the dynamic co-expression network of heart regeneration in the zebrafish
Rodius, Sophie; Androsova, Ganna UL; Götz, Lou et al

in Scientific Reports (2016), 6

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact ... [more ▼]

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. [less ▲]

Detailed reference viewed: 86 (4 UL)
See detail“Melanomics”: analysis and integration of whole genomes, transcriptomes and miRNomes of primary melanoma patients
Reinsbach, Susanne; Wienecke, Anke UL; Ginolhac, Aurélien UL et al

in European Journal of Cancer (2016), 61(Suppl.1), 32

Detailed reference viewed: 237 (20 UL)
Full Text
Peer Reviewed
See detailA comprehensive integrative analysis of the transcriptional network underlying the zebrafish heart regeneration
Androsova, Ganna UL; Rodius, Sophie; Nazarov, Petr et al

Poster (2014, September 08)

Despite a notable reduction in incidence of acute myocardial infarction (MI), patients who experienced it remain at risk for premature death and cardiac malfunction. The human cardiomyocytes are not able ... [more ▼]

Despite a notable reduction in incidence of acute myocardial infarction (MI), patients who experienced it remain at risk for premature death and cardiac malfunction. The human cardiomyocytes are not able to achieve extensive regeneration upon MI. Remarkably, the adult zebrafish is able to achieve complete heart regeneration following amputation, cryoinjury or genetic ablation. This raises new potential opportunities on how to boost heart healing capacity in humans. The objective of our research is to characterize the transcriptional network of the zebrafish heart regeneration and underlying regulatory mechanisms. To conduct our investigation, we used microarray data from zebrafish at 6 post-cryoinjury time points (4 hours, and 1, 3, 7, 14 and 90 days) and control samples. We thereon looked for the gene co-expression patterns in the data and, based on that, constructed a weighted gene co-expression network. To detect candidate functional sub-networks (modules), we used two different network clustering approaches: a density-based (ClusterONE) and a topological overlap-based (Hybrid Dynamic Branch Cut) algorithms. The visualization of the expression changes of the candidate modules reflected the dynamics of the recovery process. Also we aimed to identify candidate “hub” genes that might regulate the behavior of the biological modules and drive the regeneration process. We identified eighteen distinct modules associated with heart recovery upon cryoinjury. Functional enrichment analysis displayed that the modules are involved in different cellular processes crucial for heart regeneration, including: cell fate specification (p-value < 0.006) and migration (p-value < 0.047), ribosome biogenesis (p-value < 0.004), cardiac cell differentiation (p-value < 3E-04), and various signaling events (p-value < 0.037). The visualization of the modules’ expression profiles confirmed the relevance of these functional enrichments. For instance, the genes of the module involved in regulation of endodermal cell fate specification were up-regulated upon injury until 3 days. Among the candidate hub genes detected in the network, there are genes relevant to atherosclerosis treatment and inflammation during cardiac arrest. These and other findings are currently undergoing deeper computational analyses. The top promising targets will be independently validated using our zebrafish (in vivo) model. In conclusion, our findings provide insights into the complex regulatory mechanisms involved during heart regeneration in the zebrafish. These data will be useful for modelling specific network-based responses to heart injury, and for finding sensitive network points that may trigger or boost heart regeneration. [less ▲]

Detailed reference viewed: 92 (9 UL)