References of "Moore, Michael"
     in
Bookmark and Share    
Full Text
See detailA Global Vertical Land Movement Data Set from a Combination of Global Navigation Satellite System Solutions
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL et al

Poster (2017, July 13)

Coastal sea-level measurements by tide gauges provide the longest instrumental records of sea-levels with some stretching from the 19th century to present. The derived mean sea-level (MSL) records provide ... [more ▼]

Coastal sea-level measurements by tide gauges provide the longest instrumental records of sea-levels with some stretching from the 19th century to present. The derived mean sea-level (MSL) records provide sea-level relative to a nearby tide gauge benchmark (TGBM), which allows for the continuation of this record in time after, for example, equipment modifications. Any changes in the benchmark levels induced by vertical land movements (VLM) affect the MSL records and hence the computed sea-levels. In the past, MSL records affected by VLM were often excluded from further analyses or the VLM were modelled using numerical models of the glacial isostatic adjustment (GIA) process. Over the last two decades Global Navigation Satellite System (GNSS), in particular Global Positioning System (GPS), measurements at or close to tide gauges and the development of the associated processing strategies, have made it possible to obtain estimates of VLM in a geocentric reference system, such as the International Terrestrial Reference Frame release 2008 (ITRF2008) that approach the required accuracy for sea-level studies. Furthermore, the GPS-derived VLM estimates have been shown to improve estimates of sea-level change compared to those using the aforementioned GIA models as these models cannot predict local subsidence or uplift. The International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Working Group has recently re-processed the global GNSS data set from its archive (1000+ stations for 1995-2014) to provide VLM estimates tuned for the sea-level community. To achieve this, five TIGA Analysis Centers (TAC) contributed their reprocessed global GPS network solutions to the WG, all employing the latest bias models and processing strategies in accordance with the second re-processing compaign (repro2) of the IGS. These individual solutions were then combined by the TIGA Combination Center (TCC) to produce, for the first time, a TIGA combined solution (Release 0.99). This combined solution allows an evaluation of each individual TAC solution while also providing a means to gauge the quality and reliability of the combined solution, which is generally regarded as superior to the individual TAC solutions. Using time series analysis methods, estimates of VLM can then be derived from the daily position estimates, which are sub-sequentially employed to investigate coastal sea-levels. In this study, we show results from the evaluation of the relevant solutions, provide an evaluation of the TIGA VLM estimates and give examples of their impact on sea-level estimates for selected tide gauges from around the world. The TAC and TIGA combined solutions, as well as the derived VLM data sets are available from the IGS TIGA WG and will be accessible through SONEL (www.sonel.org) in the near future. [less ▲]

Detailed reference viewed: 180 (17 UL)
Full Text
See detailOn the Scientific Applications of IGS Products: An Assessment of the Reprocessed TIGA Solutions and Combined Products
Hunegnaw, Addisu UL; Teferle, Felix Norman UL; Abraha, Kibrom Ebuy UL et al

Scientific Conference (2017, July 03)

Global sea levels have risen since the early 19th century and this rise is likely to accelerate through the 21st century and beyond. Much of the past information on sea level rise stems from the ... [more ▼]

Global sea levels have risen since the early 19th century and this rise is likely to accelerate through the 21st century and beyond. Much of the past information on sea level rise stems from the instrumental records of tide gauges, which measure changes in sea level relative to a tide gauge benchmark (TGBM) situated on land. In order to assess regional or global sea level changes the vertical land movements (VLM) at the tide gauge and its TGBM need to be monitored. GNSS, in particular GPS, has been recognized as one space-geodetic technique to provide highly accurate estimates of VLM in a geocentric reference frame for tide gauges and their TGBMs. As it turned out, this scientific application of GNSS poses the most stringent requirements on the consistency and homogeneity on the data, processing strategies, satellite products, bias models and reference frames used in the analysis of GNSS measurements. Under the umbrella of the International GNSS Service (IGS), the Tide Gauge Benchmark Monitoring (TIGA) Working Group (WG) has the objective to provide highly-accurate positions and VLM estimates for a global network of tide gauges contributing to the Global Sea Level Observing System (GLOSS) and the Permanent Service for Mean Sea Level (PSMSL). As such TIGA forms an important contribution of the IGS to the goals of the Global Geodetic Observing System (GGOS), the Global Climate Observing System (GCOS) and the World Climate Research Programme (WCRP). To achieve the TIGA-WG objectives, five TIGA Analysis Centers (TACs) contributed re-processed global GPS network solutions to TIGA, employing the latest bias models and processing strategies in accordance with the second IGS re-processing campaign (repro2). These individual TAC solutions were then used to compute the combined products by the TIGA Combination Centre (TCC) at the University of Luxembourg using an in-house modified version of the CATREF software package. In this study, we present and internally evaluate the individual TAC and TIGA combined products. We investigate station positions, scale and origin biases, including their frequency content. We also externally evaluate the combined products, particularly the VLM estimates, using solutions from the ITRF2008, ITRF2014 and the glacial isostatic adjustment model ICE-6G (VM5a). Finally, we draw some conclusions on the recent advances and remaining limitations of the various IGS products required for the challenging application to sea level studies. [less ▲]

Detailed reference viewed: 150 (10 UL)