References of "Müller, Ulrich 40020527"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMolecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index
Philipp, Martine UL; Aleksandrova, Ralitsa UL; Müller, Ulrich UL et al

in Soft Matter (2014), 10(37), 7297-7305

The phase separation of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions is known to strongly affect their volume expansion behaviour and the elastic moduli, as the latter are strongly coupled to ... [more ▼]

The phase separation of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions is known to strongly affect their volume expansion behaviour and the elastic moduli, as the latter are strongly coupled to the macroscopic order parameter. On the molecular scale, considerable changes in H-bonding and hydrophobic interactions, as well as in the structure govern the demixing process. However, the relationship between the molecular and macroscopic order parameters is unclear for such complex phase-separating solutions. We contribute to the clarification of this problem by relating optical to volumetric properties across the demixing transition of dilute to concentrated aqueous PNIPAM solutions. Far from the demixing temperature, the temperature dependence of the refractive index is predominantly determined by thermal expansion. In the course of phase separation, the refractive index is dominated by the anomalous behaviour of the specific refractivity, which reflects the spatio-temporally averaged changes in molecular interactions and the structural reorganization of the demixing solutions. Moreover, the presence of relaxation processes is studied by the complex expansion coefficient using the novel technique of temperature modulated optical refractometry. [less ▲]

Detailed reference viewed: 80 (1 UL)
Full Text
Peer Reviewed
See detailImmense elastic nonlinearities at the demixing transition of aqueous PNIPAM solutions
Philipp, Martine UL; Müller, Ulrich UL; Aleksandrova, Ralitsa UL et al

in Soft Matter (2013), 9

Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the ... [more ▼]

Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the transformation at mechanical instabilities accompanying many phase transitions in soft matter. Because of inherent experimental difficulties, only little is known about third order (nonlinear) elastic constants within liquids, gels and polymers. Here we show that a key concept to access third order elasticity in soft materials is the determination of mode Gr¨uneisen parameters. We report the first direct observation of third order elastic constants across mechanical instabilities accompanying the liquid–liquid demixing transition of semi-dilute aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions. Immense elastic nonlinearities, leading to a strong strain-softening in the phase-separating PNIPAM solutions, are observed. Molecular mechanisms, which may be responsible for these immense elastic nonlinearities, are discussed. The importance of third order elastic constants in comparison to second order (linear) elastic constants in the demixing PNIPAM solutions evidences the need to focus more on the general role played by nonlinear elasticity at phase transitions within synthetic and biological liquids and gels. [less ▲]

Detailed reference viewed: 91 (8 UL)
Full Text
Peer Reviewed
See detailKinetic processes at the demixing transition of PNIPAM solutions
Philipp, Martine UL; Müller, Ulrich UL; Jiménez Riobóo et al

in Soft Matter (2013), 9

Kinetic processes, which are joined with mass transport, are studied in the vicinity of the sharp LCST-type demixing transition of semi-dilute aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions ... [more ▼]

Kinetic processes, which are joined with mass transport, are studied in the vicinity of the sharp LCST-type demixing transition of semi-dilute aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions. These processes are slow as compared to the highly cooperative collapse of individual polymer chains. Purely elastic properties, that are particularly sensitive to this phase transition, are addressed depending on the temperature, space and time by Brillouin spectroscopy. Above the demixing temperature Tc, we discriminate between kinetics related to the phase separation into PNIPAM-rich and PNIPAM-poor domains and kinetics connected to the impact of gravitation on the on-going phase separation. Using shallow temperature jumps of 0.3 C, the growth of compact PNIPAM-rich agglomerates with identical gel-like mechanical consistency is provoked independently of temperature and position within the sample above Tc. Astonishingly, the transition temperature does not vary while heating or cooling the solutions across the phase transition, although the elastic properties depend strongly on space and time during the equilibration of PNIPAM concentration gradients following the re-entrance into the lowtemperature phase. [less ▲]

Detailed reference viewed: 65 (5 UL)
Full Text
Peer Reviewed
See detailTemperature modulated optical refractometry: A quasi-isothermal method to determine the dynamic volume expansion coefficient
Müller, Ulrich UL; Philipp, Martine UL; Thomassey, Matthieu UL et al

in Thermochimica Acta (2013), 555

The volume expansion coefficient is a thermodynamic key parameter yielding insight into molecular cohesion and organization of condensed matter. We present here the novel experimental technique ... [more ▼]

The volume expansion coefficient is a thermodynamic key parameter yielding insight into molecular cohesion and organization of condensed matter. We present here the novel experimental technique temperature modulated optical refractometry (TMOR) to determine not only the static but also the dynamic volume expansion coefficient of transparent condensed matter of cubic or isotropic symmetry. A specialty of TMOR is its capability to measure the volume expansion coefficient under quasi-isothermal conditions. In this experimental mode TMOR is able to differentiate between static, dynamic and kinetic contributions to the volume expansion coefficient. Due to these features TMOR especially qualifies for the investigation of structural changes provoked by structural phase transitions, glass transitions and other structure-related transformations in transparent condensed matter. The scientific potential of this novel experimental technique is demonstrated by evidencing anomalies of the complex volume expansion coefficient accompanying the chemically induced glass transition occurring during the formation of a covalently cross-linked epoxy network. [less ▲]

Detailed reference viewed: 120 (9 UL)
Full Text
See detailCompetition Between Chemical Network Formation and Physical Adsorption and Desorption Processes in a Silica-Filled Silicone Rubber: Calorimetry versus Refractometry Studies
Krüger, Jan-Kristian UL; Müller, Ulrich UL; Zielinski, Bartosz UL et al

in Journal of Adhesion (2012), 88(7), 649-663

Calorimetry and high-performance refractometry are applied to study the network formation and accompanying morphological changes in reactive polydimethylsiloxane systems filled with silica nanoparticles ... [more ▼]

Calorimetry and high-performance refractometry are applied to study the network formation and accompanying morphological changes in reactive polydimethylsiloxane systems filled with silica nanoparticles. Both methods give insight into the structure formation during the polymerization of silica-filled silicone nanocomposites in an impressively complementary way. It will be shown that the specific heat flow as determined by calorimetry does not allow for estimating the chemical conversion whereas the refractive index does, which results from the different perspectives of both techniques on the relevant polymerization, adsorption, and desorption processes occurring in the nanocomposites. Finally, the interphase formation in the polymeric matrix in the vicinity of the nanoparticles and the network formation within the silicone rubber are demonstrated to be strongly correlated processes. [less ▲]

Detailed reference viewed: 63 (1 UL)
Full Text
Peer Reviewed
See detailDissolution, transport and reaction at a DICY/DGEBA interface
Müller, Ulrich UL; Philipp, M.; Gaukler, J. C. et al

in Journal of Adhesion (2012), 88(3), 253-276

The curing of an epoxy consisting of the solid hardener dicyandiamide (DICY) and the resin diglycidyl ether of bisphenol A (DGEBA) is studied in a system consisting of a tablet of DICY embedded in liquid ... [more ▼]

The curing of an epoxy consisting of the solid hardener dicyandiamide (DICY) and the resin diglycidyl ether of bisphenol A (DGEBA) is studied in a system consisting of a tablet of DICY embedded in liquid DGEBA. Dissolution of DICY within the liquid DGEBA in combination with the transport of dissolved DICY from the tablet border into DGEBA and the chemical reaction of both reactants is studied by scanning Brillouin microscopy and infrared spectroscopy. Scanning Brillouin microscopy demonstrates the spatial and temporal evolution of the static and dynamic hypersonic properties in the course of curing in the vicinity of the DICY tablet. Infrared spectroscopy performed on epoxy pieces extracted from the final sample at different distances from the tablet surface give information about the spatial evolution of the curing process. The results achieved by both techniques are finally combined to yield a better understanding of the curing of DICY-based epoxies, which transform upon curing from strongly heterogeneous systems towards increasingly homogeneous systems. Copyright © Taylor & Francis Group, LLC. [less ▲]

Detailed reference viewed: 71 (0 UL)
Full Text
Peer Reviewed
See detailOn the elastic nature of the demixing transition of aqueous PNIPAM solutions
Phillip, M.; Müller, Ulrich UL; Aleksandrova, Ralitsa UL et al

in Soft Matter (2012), 8

Mechanical instabilities accompanying the demixing transition of semi-dilute aqueous poly(Nisopropylacrylamide) (PNIPAM) solutions are probed for the first time with Brillouin spectroscopy, densitometry ... [more ▼]

Mechanical instabilities accompanying the demixing transition of semi-dilute aqueous poly(Nisopropylacrylamide) (PNIPAM) solutions are probed for the first time with Brillouin spectroscopy, densitometry and refractometry. The particular role of the elastic moduli and the mass density at this coil-to-globule transition followed by molecular aggregation is investigated. Even though the demixing transition of PNIPAM solutions is denoted as a volume phase transition, it turns out that this transition is governed by the elastic properties, instead of the volume properties. This is consistent with earlier findings made for the demixing transition in chemically cross-linked PNIPAM hydrogels. Above the demixing temperature, Brillouin spectroscopy discriminates compact PNIPAM-rich agglomerates with sizes larger than 200 nm. Interestingly, these agglomerates possess a sharp distribution of elastic moduli, which can be attributed without any doubt to a material with gel-like mechanical consistency. Thus the phase-separated PNIPAM-rich agglomerates are not in the glassy state. [less ▲]

Detailed reference viewed: 60 (2 UL)
Full Text
See detailScanning Brillouin Microscopy: Acoustic Microscopy at Gigahertz Frequencies
Philipp, Martine UL; Müller, Ulrich UL; Sanctuary, Roland UL et al

in Archives des Sciences Naturelles, Physiques et Mathématiques (2012), NS 46(Special volume (invited Review Article)),

Detailed reference viewed: 237 (4 UL)
Full Text
See detailInfluence of Nanoparticles on the Coupling Between Optical Dipoles in Epoxy-Silica Nanocomposites During Network Formation
Philipp, Martine UL; Müller, Ulrich UL; Gervais, Pierre-Colin et al

in The Journal of Adhesion (2012), 88(7), 566-588

High-performance refractometry and infrared spectroscopy are combined in order to elucidate the gelation process and the glass transition during the network formation of epoxies and epoxy-based ... [more ▼]

High-performance refractometry and infrared spectroscopy are combined in order to elucidate the gelation process and the glass transition during the network formation of epoxies and epoxy-based nanocomposites. Whereas infrared spectroscopy yields the chemical conversion due to the opening of oxirane rings during the covalent network formation, high-performance refractometry is extremely sensitive to the accompanying changes of the arrangement of the molecular network. In accordance with the Lorentz-Lorenz relationship, the evolution of the refractive index seems to reflect that of the mass density during polymerization of the epoxy-based systems within the limits of a few percent. The slight deviations from the Lorentz-Lorenz relationship, which occur during the gelation of the epoxy-based systems, are attributed to long-ranged dipole-dipole interactions, which respond at optical frequencies. This point of view is supported by the fact that chemically inert silica nanoparticles embedded in the pure epoxy matrix as disturbances for these dipole-dipole interactions are able to diminish or even to suppress totally this excess contribution of the refractive index. [less ▲]

Detailed reference viewed: 100 (1 UL)
Full Text
See detailStructural properties of poly(N-isopropyl acrylamide)-based systems
Philipp, Martine UL; Magerl, D.; Aleksandrova, Ralitsa UL et al

Poster (2011, October 10)

Detailed reference viewed: 30 (3 UL)
Full Text
See detailStructural properties of poly(N-isopropyl acrylamide)-based systems
Philipp, Martine UL; Magerl, D.; Aleksandrova, Ralitza UL et al

Poster (2011, June 08)

Detailed reference viewed: 21 (2 UL)
Full Text
See detailStructural properties of poly(N-isopropyl acrylamide)-based systems
Philipp, Martine UL; Magerl, D.; Aleksandrova, Ralitsa UL et al

Poster (2011, June 01)

Detailed reference viewed: 35 (3 UL)
Full Text
Peer Reviewed
See detailOn the interplay between matter transport and structure formation at epoxy-hardener interfaces visualized by scanning Brillouin microscopy
Philipp, Martine UL; Müller, Ulrich UL; Sanctuary, Roland UL et al

in Soft Matter (2011), 7(1), 118-124

Structural developments are investigated in network-forming reactive polymers by time- and 10 space-resolved scanning Brillouin microscopy. Hypersonic properties are probed to reveal the subtle interplay ... [more ▼]

Structural developments are investigated in network-forming reactive polymers by time- and 10 space-resolved scanning Brillouin microscopy. Hypersonic properties are probed to reveal the subtle interplay between molecular transport, dissolution, polymerization and network defects in the vicinity of the interface between reactants, which are either pure epoxy resin or various epoxy resin-hardener mixtures, topped by a layer of pure hardener. The trans-interfacial polymerization produces heterogeneous epoxy structures of either gelatinous or glassy nature. Interestingly, the 15 hardener can easily penetrate and swell these networks and epoxy network fragments can be transported over several millimeters by convective flow. The observed features may be used to form interpenetrating networks during self-healing procedures. [less ▲]

Detailed reference viewed: 64 (1 UL)
Full Text
Peer Reviewed
See detailFunctional nano fillers in epoxy-dicyandiamide adhesives for prolonged shelf life and efficient cure
Gaukler, J. Ch; Müller, Ulrich UL; Krüger, Jan-Kristian UL et al

in e-Polymers (2011), (10), 1-15

Shelf life at room temperature and curing behaviour at elevated temperature are studied for hot-curing accelerated epoxies (EP, diglycidylether of bisphenol A plus dicyandiamide (Dicy)) by FTIR ... [more ▼]

Shelf life at room temperature and curing behaviour at elevated temperature are studied for hot-curing accelerated epoxies (EP, diglycidylether of bisphenol A plus dicyandiamide (Dicy)) by FTIR-spectroscopy and modulated DSC. The accelerator is added either directly or with nano-zeolite filler to the EP. Due to the immobilization of the accelerator in the pores of the nano-zeolite, the shelf life of this EP is 5 times longer than for the EP containing free accelerator. While the free accelerator acts during the whole heating step to curing temperature, the nano-zeolite does not release the accelerator before ca. 100 °C. As monitored by light microscopy, the released accelerator not only supports the curing but also stimulates the dissolution of the solid Dicy. As the result, network formation at 170 °C finishes within less than 25 minutes for the nano-filled EP. [less ▲]

Detailed reference viewed: 106 (0 UL)
Full Text
Peer Reviewed
See detailHeterogeneous Transport Processes and Unexpected Structure Formation in Layered Epoxy and Epoxy-Alumina Nanocomposite Systems
Philipp, Martine UL; Müller, Ulrich UL; Sanctuary, Roland UL et al

in Journal of Adhesion (2011), 87(11), 1073-1098

Static and dynamic hypersonic properties are probed to reveal the subtle interplay between demixing, matter transport, chemical network formation, polymer network swelling, and network damage in the ... [more ▼]

Static and dynamic hypersonic properties are probed to reveal the subtle interplay between demixing, matter transport, chemical network formation, polymer network swelling, and network damage in the vicinity of the interface between the reactants of amine-curing epoxies. An innovative time- and space-resolved acoustic microscopy, called scanning Brillouin microscopy, gives access to these competing transport and structure formation processes in epoxy systems consisting of either pure resin, alumina nanoparticles-filled resin, or various epoxy resin-hardener mixtures topped by a layer of pure hardener. Static and dynamic hypersonic properties are probed to reveal the subtle interplay between demixing, matter transport, chemical network formation, polymer network swelling, and network damage in the vicinity of the interface between the reactants of amine-curing epoxies. An innovative time- and space-resolved acoustic microscopy, called scanning Brillouin microscopy, gives access to these competing transport and structure formation processes in epoxy systems consisting of either pure resin, alumina nanoparticles-filled resin, or various epoxy resin-hardener mixtures topped by a layer of pure hardener. [less ▲]

Detailed reference viewed: 75 (1 UL)
Full Text
Peer Reviewed
See detailCombination of high performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies
Müller, Ulrich UL; Philipp, Martine UL; Gervais, P. C. UL et al

in New Journal of Physics (2010), 12

A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations ... [more ▼]

A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight in the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions. [less ▲]

Detailed reference viewed: 79 (1 UL)
Full Text
Peer Reviewed
See detailTrans-Interfacial Polymerization and Matter Transport Processes in Epoxy-Alumina Nanocomposites Visualized By Scanning Brillouin Microscopy
Sanctuary, Roland UL; Philipp, Martine UL; Kieffer, J. et al

in Journal of Physical Chemistry B (2010), 114(25), 8396-8404

The structural developments in the vicinity of the interface between the reactants of an epoxy are investigated using time- and space-resolved scanning Brillouin microscopy. The hypersonic profile across ... [more ▼]

The structural developments in the vicinity of the interface between the reactants of an epoxy are investigated using time- and space-resolved scanning Brillouin microscopy. The hypersonic profile across the phase boundary evolves with strong spatial asymmetry and exhibits erratic behavior within the resin-rich region, which is attributed to a complex interplay between matter transport, dissolution, polymerization, and molecular unravelling process. The presence of alumina nanoparticles in the resin changes the character of these matter transport and reaction processes significantly. On the one hand, the nanoparticles act as transport barriers, hindering the mixing of the reactive components; on the other hand they seem to have a catalytic influence on the epoxy polymerization under certain circumstances. Their transport against gravity is tentatively attributed to gradients in surface tension. [less ▲]

Detailed reference viewed: 67 (1 UL)